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ABSTRACT 
 
In response to a scope of work outlined by the Collaborative Adaptive Management Team for the 
Sacramento–San Joaquin River Delta, we propose to estimate survival of delta smelt 
(Hypomesus transpacificus) during autumn, conduct a stock-recruitment analysis, and assess 
occupancy and habitat quality for delta smelt during autumn. Our proposed work will be the first 
to account for effects of imperfect detection on inferences about relations between population 
dynamics of delta smelt and environmental covariates. These covariates, which will include but 
will not be limited to autumn outflow and the position of salinity thresholds, may be relevant at 
either the level of the Delta or the level of smaller regions. We will use information criteria, 
which compare model fit while constraining model complexity, to assess the extent to which the 
observed data support multiple hypotheses about survival, stock recruitment, and habitat quality. 
 
To estimate survival, we will model the abundance of the species in multiple geographic regions 
and months, accounting both for survival and for movement among regions. We will model 
survival and movement as functions of environmental covariates that have been hypothesized to 
drive the status of the species. We then will statistically fit each model to evaluate the extent to 
which it explains the variability in the number of delta smelt caught by fall midwater trawl 
surveys from 1967 through 2014. We will build simulation models to determine how accurately 
our model can estimate the coefficients relating covariates to survival and movement given 
different probabilities of detection and sample sizes. 
 
We will compare the model-based abundance in December of a given year with abundance of the 
spawning population and the mean size of spawners in the spring of the following year, and with 
larval production in April of the following year. Larval production is estimated by the California 
Department of Fish and Wildlife from the 20 mm survey, and their indices of annual production 
currently assume perfect detection. We propose to develop a new index of abundance that 
accounts for variation in the probability of detection as a function of space, time, and covariates.  
 
We will use multi-season patch occupancy models to examine whether environmental covariates 
are associated with spatially explicit probabilities of presence. This evaluation will extend 
previous efforts to define delta smelt habitat and account for the probability of capturing delta 
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smelt. This novel approach for defining delta smelt habitat has the potential to redefine relations 
between delta smelt presence and salinity gradients, conductivity, and turbidity that previously 
were used to define critical habitat. By accounting for imperfect detection, our approach also has 
the potential to expand understanding of the spatial and temporal patterns in habitat among years. 
Our proposed models differ substantively from, yet complement, other models of the dynamics 
of delta smelt that are being developed.  
 
 
INTRODUCTION 
 
Operations of the Central Valley Project and State Water Project, including outflows during 
autumn, currently are regulated by two biological opinions. The first biological opinion (USFWS 
2008) addressed effects of autumn outflows on delta smelt (Hypomesus transpacificus) and its 
designated critical habitat. The second biological opinion (NMFS 2009) addressed effects of 
water-project operations on Sacramento River winter-run Chinook salmon and Central Valley 
spring-run Chinook salmon (Oncorhynchus tshawytscha), Central Valley steelhead (O. mykiss), 
the southern distinct population segment of North American green sturgeon (Acipenser 
medirostris), and southern resident killer whales (Orcinus orca). The reasonable and prudent 
alternative (RPA) included in the 2008 biological opinion required that outflow be managed such 
that average X2 in September and October is 74 km when the preceding water year was 
classified as wet, and 81 km when the preceding water year was classified as above normal. X2 
represents the distance in km upstream from the Golden Gate Bridge where the tidally averaged 
salinity near the bottom of the water column is 2 practical salinity units (psu) (Jassby et al. 1995). 
Wet and above-normal years are defined on the basis of estimated unimpaired runoff from the 
Sacramento, Feather, Yuba, and American Rivers during the current year and the previous year 
(the Sacramento Basin 40-30-30 index). Additionally, in November of any year in which the 
preceding water year was classified as wet or above normal, the inflows to the two projects’ 
reservoirs in the Sacramento Basin must be added to reservoir releases to increase outflows up to 
the 74 or 81 km targets. 
 
The RPA reflects hypotheses that as outflows increase, the low salinity zone (LSZ; generally 
defined as salinities from 0.5–6 psu or 1–6 psu) moves westward, increases the amount of habitat 
for delta smelt, and increases the probability of persistence of delta smelt (Feyrer et al. 2007, 
2011). An increase in outflows requires either reducing the amount of water exported from the 
estuary or increasing the amount of water released from reservoirs upstream, which limits the 
amount of water available for agriculture and other uses. However, the relation between the 
location of X2 and the presence of delta smelt may be complicated by static, regional 
environmental attributes. Geographic region alone (13 subdivisions) explained 4.7% of the 
variability in delta smelt detections by the fall midwater trawl survey (FMWT) (Manly et al. 
2015). Region and the interactions between region, turbidity, and salinity explained 19.1% of the 
variability (Manly et al. 2015). 
 
There is persistent debate about whether the survival and recruitment of delta smelt is a function 
of the location of the X2 isohaline and the extent to which the location of the X2 isohaline is 
associated with habitat quality for the species. Scientific evidence is equivocal (e.g., Feyrer et al. 
2007, 2011, Mac Nally et al. 2010, Thomson et al. 2010, Maunder and Deriso 2011, Miller et al. 
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2012). In some cases, questions have been raised about the reliability of analyses that were 
interpreted as supporting the hypothesis that survival and recruitment of delta smelt is a function 
of the location of X2 (NRC 2012). But regardless of the analytical method applied, data on 
distribution and abundance of delta smelt, and on environmental covariates that may be 
associated with measures of the species’ viability, are limited (see Research Challenges). For 
example, there are few data on the distribution and abundance of potential predators of delta 
smelt, and on the transport mechanisms and distribution of some toxicants (Brooks et al. 2012, 
Scholz et al. 2012). Furthermore, some of the surveys for delta smelt sample a relatively narrow 
portion of the full gradient of some environmental attributes that likely are associated with the 
distribution and abundance of delta smelt, such as salinity (Merz et al. 2011). 
 
Our proposed work responds to the desire of regulators and stakeholders to determine the extent 
to which hypothesized components of habitat, including salinity in autumn and turbidity in 
autumn, are related to measures of the viability of delta smelt. The Collaborative Science and 
Adaptive Management Program (CSAMP) for the Sacramento–San Joaquin River Delta (Delta) 
expects that our results will be relevant to management of the quantity of water exported from 
the Delta, the timing of release of water, and other management actions that may contribute to 
conservation of delta smelt. 
 
Goals and objectives 
 
We aim to achieve three goals that reflect a scope of work outlined by the Collaborative 
Adaptive Management Team (CAMT). The CAMP is guided by the Collaborative Science 
Policy Group, which in turn was created by the CSAMP. The first goal is to understand which 
environmental variables are associated with survival of delta smelt during autumn. The second 
goal is to evaluate whether abundance of delta smelt in December is related to recruitment of the 
species as measured in the spring (i.e., the probability that pre-reproductive individuals survive 
and produce larvae). The third goal is to characterize occupancy and habitat quality for delta 
smelt during autumn. We will conduct separate analyses to achieve each of these goals. 
 
We propose to use quantitative models that relate environmental covariates to survival, 
recruitment, and habitat of delta smelt to address these three goals. We will explore both local 
covariates (i.e., those measured at each sampling station) and global covariates (e.g., system 
level covariates such as outflow from the Delta). Of particular interest to CAMT is the role of 
outflow, such as whether high outflow may displace fish from areas of high habitat quality or 
create areas of high habitat quality. Our selection of covariates for inclusion in each analysis will 
reflect hypotheses presented in numerous articles, reports and conceptual models therein (e.g., 
IEP 2015), and collaborative meetings. If desired, we will work with members of the Delta Smelt 
Scoping Team (DSST) and CAMT to frame their existing hypotheses about attributes of habitat, 
or the gradient of habitat quality, in ways that are amenable to quantitative evaluation and 
comparison with other hypotheses (see Model fitting and comparison of hypotheses).  
 
Local and global covariates that we include in our analyses may include but will not be limited to 
outflow, X2, electrical conductivity (a measure of salinity), turbidity (e.g., Secchi depth or 
suspended sediments), water temperature, surface area or volume of tidal marsh, locations or 
concentrations of toxicants, abundance or density of prey, and abundance or density of predators, 
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such as pike minnow (Ptychocheilus oregonensis) and striped bass (Morone saxatilis). The 
rationale for hypothesizing that these variables are directly or indirectly associated with survival, 
recruitment, or presence of delta smelt has been documented in numerous sources (see Mac 
Nally et al. 2010, Thomson et al. 2010, Brooks et al. 2012, Scholz et al. 2012, IEP 2015). We 
will not make a priori assumptions about values of these variables that are associated with 
presence of habitat or quality of habitat; doing so would create a lack of independence in the 
analyses given that one of our implicit aims is to objectively quantify habitat quality. 
 
To understand how the covariates may affect survival, recruitment, and habitat quality, models 
must also be developed for the process of detecting or catching animals given that they are 
present. For example, models of abundance must define processes for catching fish (see 
Estimating survival of delta smelt during autumn). Also, multi-season patch-occupancy models 
treat detection and occupancy as distinct response variables (see Occupancy and habitat quality 
for delta smelt during autumn) and thus must define models for detection. We expect that the 
probability of capture and probability of detection will vary as a function of environmental 
conditions and gear selectivity (changes in detection probability as a function of fish size). 
Covariates of detection probability may include but are not limited to turbidity, water 
temperature, time of day, date, month, year, tow duration, and tow depth. For example, time of 
day of sampling is relevant because delta smelt may avoid areas with high light levels. 
Additionally, if there is an independent source of data on size of delta smelt (i.e., data that were 
not derived from the FMWT), we will include the size distribution of delta smelt as a detection 
covariate to account for the fact that size varies among months and among years. If there are no 
independent data on size, we will use existing assumptions about gear efficiency as a function of 
the week of capture (K. Newman personal communication). 
 
We have five objectives. First, we aim to model the abundance of delta smelt in four geographic 
regions and four months, accounting both for survival and for movement among regions. Our 
second objective is to build simulation models to determine how accurately our model can 
estimate the coefficients relating covariates to survival and movement given different 
probabilities of detection and sample sizes. Our third objective, which we will begin to pursue 
when the project is initiated, is to conduct an expert elicitation of predation covariates. Fourth, 
we seek to compare the model-based abundance in December of a given year with abundance of 
the spawning population and the mean size of spawners in the spring of the following year, and 
with larval production in April of the following year. We propose to develop a new index of 
larval abundance that accounts for variation in the probability of detection as a function of space, 
time, and covariates. Our fifth objective is to use multi-season patch occupancy models to 
examine whether environmental covariates are associated with spatially explicit probabilities of 
presence. This evaluation will extend previous efforts to define delta smelt habitat and account 
for the probability of capturing delta smelt.  
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METHODS 
 
Data 
 
Because our analysis of survival will focus on autumn, we will estimate model parameters on the 
basis of the dynamics of each annual cohort of delta smelt from August through December. Our 
estimates of abundance in August will come from the summer townet survey (STN), which 
samples juveniles. Since 1959, the STN has collected samples of delta smelt from a set of 31 
index stations that extend from San Pablo Bay to Rio Vista (Figure 1). Before 2003, the number 
of summer townet surveys per year ranged from two to five. Since 2003, six surveys have been 
conducted at approximately two-week intervals from June through August. 
 

 
 
Figure 1. Stations sampled by the Summer Townet Survey. Figure from the California Department of 
Fish and Wildlife. 
 
 
We will derive estimates of abundance for September through December from the FMWT, 
which has operated since 1967 (we will omit years for which data are missing or incomplete). 
Both age-0 delta smelt (subadults) and age-1 delta smelt (adults) are captured by the FMWT, 
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although relatively few age-1 fish have been caught in recent years. Beginning in 1990, the 
number of fish caught was used by the California Department of Fish and Wildlife (formerly 
California Department of Fish and Game) to estimate the abundance of each cohort. We will use 
the sum of the number of subadults and the number of adults. The FMWT collects samples from 
about 122 stations, but a subset of 100 index stations are used to estimate the annual abundance 
of delta smelt (Figure 2). We will use the catches from these 100 index stations to be consistent 
with previous analyses of catch data and occurrence (e.g., Feyrer et al. 2011, Manly et al. 2015). 
 

 
 
Figure 2. Stations sampled by the fall midwater trawl (FMWT) survey. Figure from the California 
Department of Fish and Wildlife.  
 
 
The 20 mm survey, which captures larvae and juveniles, has been conducted since 1995. In the 
1990s, surveys typically began in April. More recently, surveys have begun in March and 
extended through June or July. In most cases, three replicate tows are conducted at each station, 
and estimates of the station-level density of delta smelt are calculated by the California 
Department of Fish and Wildlife as a function of the average catch per volume of water sampled. 
The distribution of larvae and juveniles varies among years. 
 
We will delineate multiple regions (r) within the Delta. Ideally, one would define regions that are 
known to be biologically meaningful to delta smelt. Current efforts by Newman et al. to 
construct a life-cycle model for delta smelt divide the Delta into four main regions (far west, 
west, north, and south), each with subregions (Figure 3). Data likely are not sufficient to 
delineate more than four regions for models of abundance. For our assessment of habitat quality, 
we expect to divide the Delta into a greater number of regions among which there is spatial and 
temporal variability in the presence of delta smelt. For example, each of the four regions 
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differentiated by Newman could be divided into two regions—far west: (a) Carquinez Strait and 
Napa River, (b) San Pablo Bay; west: (a) west of Honkers Bay to Carquinez Straight, (b) 
Honkers Bay and lower Sacramento River; north: (a) Cache Slough and Sacramento Ship Canal, 
(b) upper Sacramento River; south: (a) San Joaquin River near Stockton, Twitchell, and 
Prisoners Point, Disappointment Slough, and Mokelumne North and South, (b) Franks Tract, 
Holland Cut, Mildred Island, Old and Middle River, and Grant Line Canal. As another example, 
regions could be delineated on the basis of hydrology and geomorphology (e.g., MacWilliams et 
al. 2015; S. Culberson and S. Hamilton, personal communication)—for instance, east delta, 
including the Sacramento and San Joaquin Rivers; south delta, south of the San Joaquin River; 
north delta, north of the Sacramento river; confluence, extending up to Decker Island and Three 
Mile Slough to the San Joaquin; north Suisun; Montezuma Slough; south Suisun, extending 
through the Carquinez Strait; Napa River; and San Pablo Bay (S. Hamilton personal 
communication). If data are insufficient to include all of the latter regions, the regions could be 
grouped into north Suisun, confluence, north Delta, south Suisun, and all other locations (S. 
Hamilton personal communication). The habitat-quality model will allow us to construct 
multiple regional configurations (likely three or four, given the current budget) that reflect 
alternative hypotheses about what differentiates the regions.  
 

 
Figure 3. Regions (black) and subregions (red) in the Newman et al. life-cycle model. 
 

DRAFT 58

Figure 1: Map of the four regions modeled as well as sub-regions. For inference, the Mid San Pablo
subregion of the Far West was excluded based on the relative rarity of Delta Smelt catches by fish
surveys.

Figure 2: Example of multiple observations (Delta Smelt catches by two surveys sampling at
multiple locations with the North region) associated with a single state vector component (Age 0
Delta Smelt abundances in the North region in June 1997).

Survey Date Station Catch State
20mm 1997-06-10 705 4 ↘
20mm 1997-06-10 707 0 ↘
20mm 1997-06-10 711 2 ↘
20mm 1997-06-10 716 7 ↘
20mm 1997-06-25 705 3 ↘
20mm 1997-06-25 707 2 → n1997,Jun,North,0

20mm 1997-06-25 711 0 ↗
20mm 1997-06-25 716 9 ↗
STN 1997-06-28 707 6 ↗
STN 1997-06-28 711 0 ↗
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If, in the future, each station (s) is sampled repeatedly during each month (see Research 
Challenges), then the sampling stations also could be considered as patches. 
 
We will capitalize on existing data and metadata covering the period through 2010 that have 
been compiled by Ken Newman and his research group. We also may use data that were 
archived in 2008 with the Knowledge Network for Biocomplexity, an international repository 
that largely is supported by the U.S. National Science Foundation (knb.ecoinformatics.org). We 
will work with the appropriate agencies or individuals to update these data sources with field 
data gathered through 2014. We also will coordinate with a CAMT-associated group that aims to 
inform selection of covariates for a suite of CSAMP-supported investigations, and with other 
investigators who are examining potential biases in detection or capture probability of delta 
smelt (e.g., Ken Newman, Robert Latour). Because data on predators are sparse, yet predation 
often is hypothesized to affect survival and recruitment of delta smelt, we propose to conduct an 
expert elicitation to develop one or more predation covariates (see Expert elicitation of predation 
covariates). 
 
We will assess collinearity among covariates before incorporating covariates into any of our 
models. Assessment of collinearity allows one to understand whether changes in values of 
multiple covariates are synchronous (strong positive correlation between or among covariates) or 
asynchronous (strong negative correlation). If covariates are strongly synchronous or 
asynchronous, they may provide similar signals about biological relations. We will use 
correlation analyses to assess collinearity among the covariates. Variables typically are 
considered to be correlated strongly if variance inflation factors are > 10.0 or correlation 
coefficients are > 0.60 (Neter et al. 1996). If we find strong correlations, then we will use 
ordination to construct orthogonal projections across the covariate data to capture the collinearity 
in the covariates. The best-known ordination method is principal components analysis, which 
transforms correlated variables into a set of linearly uncorrelated variables. Other ordination 
methods often are more appropriate for ecological data (Pielou 1984), and we will evaluate 
several alternatives if we find evidence of such collinearity. 
 
Expert elicitation of predation covariates 
 
One way to estimate values of parameters for which empirical data are sparse is to use expert 
elicitation (e.g., Martin et al. 2012). An expert on a particular topic has knowledge that a typical 
member of the general public does not have. However, extensive studies in psychology have 
demonstrated that experts have predictable, manageable cognitive biases (e.g., Tversky and 
Kahneman 1974, Ericsson 1996) and that judgments of the most knowledgeable individual in a 
group are consistently less accurate than the mean judgment of a diverse group. Accordingly, it 
is more reliable to use a structured method to seek information from multiple experts than to use 
information from one expert. 
 
Expert elicitation encompasses a rigorous set of methods for synthesizing expert knowledge to 
inform decision-making, and has proven reliable and practical when field data are limited (e.g., 
Donlan et al. 2010). It is useful for identifying plausible alternative hypotheses, estimating model 
parameters, and prioritizing collection of data that may have considerable bearing on policy or 
management decisions (Martin et al. 2012). The information may be elicited as point estimates or 
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as distributions of parameters (Runge et al. 2011). Our investigative team has experience with 
this method (e.g., Oedekoven, C., E. Fleishman, P. Hamilton, J.S. Clark, and R.S. Schick. Expert 
elicitation of seasonal abundance of North Atlantic right whales [Eubalaena glacialis] in the 
mid-Atlantic. Endangered Species Research, in review) and believes it may yield useful 
information until such time as empirical estimates are available. 
 
We anticipate receiving an exemption from human-subjects review from the University of 
California, Davis’ Institutional Review Board. Nevertheless, we will obtain informed consent 
from all participants in the elicitation (henceforth, experts). We anticipate engaging about six to 
12 experts with knowledge of the ecology and management of delta smelt and their predators and 
with collectively diverse organizational affiliations, ages, and career stages (Krueger et al. 2012). 
 
The investigative team, with input from the covariates working group, will develop a set of brief, 
distinct questions (Hoffrage and Gigerenzer 1998) about likely predators on delta smelt. For 
example, if we aim to elicit information on the abundance of pike minnow within a defined space 
or time period, we might ask experts to provide a low estimate (minimum value), a high estimate 
(maximum value), an estimate of the mode, and an estimate of confidence in his or her answers 
to that question (Speirs-Bridge et al. 2010). Wherever possible, we will elicit numbers as integers 
rather than as proportions or percentages because people are able to conceptualize numbers 
better than percentages (Kynn 2008, Kuhnert et al. 2010). 
 
Before asking experts to answer the questions, we will distribute a draft of the questions to the 
experts. We will convene the experts in person or by conference call to discuss the language in 
the questions and to ensure that all experts are interpreting each question in the same way 
(Martin et al. 2012). We will not discuss answers to the questions at this stage, only how the 
questions were presented. The investigative team then will improve the clarity of the questions, 
and distribute the revised questions and a description of the revisions to the experts. Experts will 
be instructed to answer the questions on the basis of their ecological knowledge without 
consulting anyone else.  
 
We will convene the group of experts for an in-person meeting during which they will discuss 
the set of answers to each question in turn. In some cases, experts may voluntarily identify their 
responses. Following the discussion, each expert will have the opportunity to revise his or her 
answers (analogous to a Delphi process [Delbecq et al. 1975], although we are not seeking 
consensus). For each question, we then will merge the experts’ answers into a single distribution 
(Iman and Conover 1982, Helbraun 2014). This distribution will be incorporated into our models 
as data on predation covariates. Because the full elicitation will require several months to 
complete, we expect that the elicited predation covariates will be incorporated into the second 
run of the occupancy model. 
 
Estimating survival of delta smelt during autumn 
 
To estimate survival of delta smelt during autumn, we will model the abundance of the species in 
each of the four major regions (Figure 3) and months. The monthly abundance of animals in a 
given region may be affected by both survival and movement. Emigration from a given region 
may occur because the region no longer serves as habitat, because habitat quality in the region 
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decreases, or because habitat quality in another region increases. Thus, our model structure will 
allow for movement among regions as a function of habitat quality. Consistent regional 
differences in densities may suggest whether different regions consistently have high or low 
relative habitat quality for delta smelt. 
 
Model structure for estimation of abundance 
 
Each cohort of delta smelt is produced from adults that spawn in the spring of a given calendar 
year, y. Because Delta Smelt are essentially an annual species, each calendar year corresponds to 
a unique cohort. We will follow the transition of each cohort y from 1967 to 2014 over the 
monthly time step t that extends from August through December. For clarity, we do not include 
the subscript y in the equations below.   
 
We will assume that the abundance in each region has a Poisson distribution, and model the state 
process of abundance as 
 
Nt ∼ Poisson(Mt−1St−1Nt−1)     (1) 
 
The initial abundance in each region (N0)	
  reflects the latent-state abundance in August. 
Subsequent abundances for the months of September through December are described by the 
state dynamics. Because delta smelt do not reproduce during autumn, we will partition the state 
equations that describe temporal changes in abundance in each region into two state processes, 
survival (S) and movement (M) (Newman et al. 2014). The vector of regional abundances at 
time t for four regions [(Nt = (N1,t, N2,t, N3,t, N4,t)] is related to the abundances at the previous time 
step by survival first and by movement second. 
In the Poisson distribution, the variance is equal to the mean. However, if the individual events 
(e.g., detections of an individual fish) are positively correlated, then the variance may exceed the 
mean. Thus, abundance also can be modeled as a negative binomial random variable, which 
allows the mean and variance can be different. Overdispersion (high variability relative to the 
mean) is common in ecological contexts, including in estimation of abundance. The negative 
binomial has a formal statistical relation with the Poisson distribution. If abundance is modeled 
hierarchically, then the mean parameter of the Poisson is a random variable. If the gamma 
distribution is used to define the mean parameter of the Poisson, the mean parameter will have 
the same functional form as a negative binomial. Accordingly, the negative binomial is 
equivalent to a mixture of Poisson distributions in which the means of those Poisson distributions 
are distributed as gamma random variables.  
 
The survival matrix for multiple regions is a square with survival (φ) during each time step on 
the diagonal. For example, if there are four regions, then the survival matrix is  
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!!!

St =

φ1,t 0 0 0
0 φ2,t 0 0
0 0 φ3,t 0
0 0 0 φ4,t

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

   (2) 

 
where φr,t is the survival rate (e.g., number of fish that survived during a given month) in region 
r and month t. 
 
The movement matrix also is square. Columns represent the locations of delta smelt during the 
previous time step (t-1) and rows represent the locations of delta smelt during the current time 
step (t). The movement matrix is 
 

!!!

Mt =

ψ 1→1,t ψ 2→1,t ψ 3→1,t ψ 4→1,t

ψ 1→2,t ψ 2→2,t ψ 3→2,t ψ 4→2,t

ψ 1→3,t ψ 2→3,t ψ 3→3,t ψ 4→3,t

ψ 1→4,t ψ 2→4,t ψ 3→4,t ψ 4→4,t

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3) 

 
To illustrate, in the second row, the first cell reflects the probability that an individual present in 
region 1 during the previous time step moves to region 2 during the current time step. The 
second cell reflects the probability that an individual present in region 2 during the previous time 
step remains in region 2. The third cell reflects the probability that an individual present in 
region 3 during the previous time step moves to region 2 during the current time step, and so 
forth.  
 
The movement matrix could be modeled in different ways to reflect different hypotheses about 
movement, such as a hypothesis that delta smelt only can move between adjacent regions. In this 
case, the probability of movement between non-adjacent regions is 0.  
 
Modeling survival and movement as functions of covariates  
 
We will model survival and movement as functions of covariates. The rate of survival and the 
rate of movement both fall within the interval (0,1). Furthermore, the values in each column of 
the movement matrix must sum to 1. To model survival rates for region r and month t !!φr ,t  we 
will use the logit() transformation 
 

!!!

logit(φr ,t )= Xr ,tβr ,t + εr ,t
εr ,t ~N(0,σ M

2 ) 	
  	
   (4)	
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as a function of covariates that also vary among regions and among months (Xr,t), a vector of 
associated coefficients !!βr ,t , which can also vary by region and month, and an error term, 

!!εr ,t ,that accounts for process error. The error term is distributed as a normal random variable 

with mean 0 and variance !!σ M
2 . 

 
We will use a different function to model dynamic rates of movement from region q to region r 
during month t (!!ψ i→ j ,t ). Movement may be related to resource selection or to the relative quality 
of habitat among regions (e.g., Newman et al. 2009, Conn et al. 2015). In this case, the 
probability of movement from region i to region j is 

!!

ψ i→ j ,t =
hj ,tηi , j

hr ,tηr , j
r=1

4

∑
	
   (5)	
  

where hr,t is the habitat quality in region r at time t, and !!ηi , j  is the dispersal probability, which is 
related to the distance between region i and another region j (Newman et al. 2009, Conn et al. 
2015). We will use a log-linear model to characterize habitat quality as a function of covariates: 
 

!!!log(hr ,t )=Wr ,tκ r ,t     (6) 

 
We will calculate the dispersal probability as a function of the Euclidean distance between the 
centroids of two regions. Use of Euclidean distances reflects an assumption that the probability 
of dispersal between any two regions decreases as the distance between those regions increases. 
For example, the probability of dispersal between region i and region j is  
 

!!ηi , j = exp(−Di→ j /σ D
2 )

   (7) 

 
where !

Di→ j  is the Euclidian distance between the centroids of regions i and j with σ2
D controlling 

the effect of distance between regions on the probability of movement (Newman et al. 2009). 
 
Modeling the observation process 
 
In the simplest version of the abundance model, the number of individuals that are observed 
(detected or captured) is modeled as a binomial random variable (Bin) given the true abundance 
in the region and samples taken during month t at a given station s, which is in region r: 
 

!!Ys(r ),t ~Bin(ps(r ),t ,Nr ,t )       (8) 
 
where Y is the number of individuals observed at station s(r) at time t. The replicated samples 
needed to estimate region-level abundances (Nr,t) will come from FMWT tows at multiple 
stations within each region r during month t. The probability of capture at each station (ps(r),t) can 
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vary as a function of covariates: 
 

!!!

logit(ps(r ),t )= Zs(r ),tγ r ,t +ν s(r ),t

ν s(r ),t ~N(0,σ p
2)      (9) 

 
where Zs(r),,t  is a matrix of covariates and γr,t	
  is a vector of coefficients describing the relations 
between covariates measured at the station and the probability of capture, and !!ν s(r ),t is a random 
effect that allows additional error in the probability of capture. 
 
The initial abundances in each region can be estimated either as free parameters in the model or 
from the number of fish caught by the STN in August. For years in which the STN was 
conducted, we propose to use the STN catches to estimate abundance prior to the autumn. 
 

!!Ys(r ),r ,0
STN ~Bin(ps(r ),r ,0 ,Nr ,0 )     (10) 

 
Because the STN gear is different from the FMWT gear, we will structure the model to estimate 
relations between the probability of capture and the environmental covariates measured at the 
time of each STN. 
 
Modeling multiple cohorts with the abundance model 
 
The above equations reflect the dynamics for a single cohort of delta smelt. As explained above, 
each cohort corresponds to a year. The initial state is the abundance in August, and subsequent 
movement and survival dynamics describe the changes in abundance from September through 
December. We propose to model the dynamics of all cohorts from 1967–2014 for which FMWT 
data are available. To provide replication for estimating the effect of covariates among cohorts, 
we initially will assume that the functional relations between survival and movement rates and a 
given covariate do not change over cohorts. We potentially can relax this assumption by 
incorporating annual random effects in the survival and movement dynamics, and we will 
explore the ability to estimate such random effects with the data sets.  
 
The abundance model will provide estimates of regional survival rates by month and cohort, φy,r,t 
but there may be interest in estimating a cohort survival rate over the autumn, e.g., φy. To 
compute this quantity as a model output, the   abundance over all regions in December could be 
divided by the abundance over all regions in September, as 
 

!!

φ y =
Nr ,Dec

r=1

4

∑

Nr ,Sept
r=1

4

∑
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Simulation models for evaluating abundance models 
 
We expect that data limitations may make it difficult to detect underlying relations between 
environmental covariates, including outflow, and survival and movement given the current field-
sampling design. We propose to conduct simulations to determine how accurately our model can 
estimate the coefficients relating environmental covariates to survival and movement (i.e., 
relative habitat quality) given different probabilities of detection and sample sizes. The 
simulations also will provide insight into how sampling biases might be overcome with 
modifications to the existing sampling design, such as repeated surveys at each station on each 
sampling date (Polanski et al. 2014). 
 
We illustrate the simulation modeling process with an example of the relation between survival 

!!φr ,t  and a global outflow covariate, xt. This example assumes that survival in each of the four 
regions r = 1, …, 4 has a different relation to outflow. 
 

!!

logit(φr ,t )= β0 +βr xt + εr ,t
εr ,t ~N(0,σ M

2 )    (11) 

 
with β0, β1, β2, β3, and β4, and σ2

M known. The betas are coefficients that describe the functional 
relation between survival and outflow in each region.  
 
There are six steps in simulating the data and estimating the coefficients. First, simulate the 
covariate values (xt) over the four months (t = September through December). Second, initialize 
the abundances of delta smelt in each region (N0) in August. Third, run the model from 
September through December and sample the cohort during each month: calculate and apply 
regional survival (Equation 11), use a known movement matrix to move animals among regions, 
and calculate the number of fish caught at each station given a specified station-level probability 
of detection and a specified regional abundance. Fourth, repeat these three steps for the next 
cohort. Fifth, use the covariate values from step 1 and the number of fish caught from step 3 as 
inputs to the statistical abundance model for each of the y = 1, … N cohorts. Sixth, estimate the 
coefficients β0, β1, β2, β3, and β4 and σ2

M in the statistical model and compare these coefficients 
with the known values. 
 
Multiple model configurations and data-generation processes could be tested with similar 
simulation models. For example, one could simulate a factorial design with two state processes 
(survival and movement), three levels of heterogeneity in detection probability (homogeneous 
across stations; heterogeneous across regions but homogeneous at stations within regions; 
heterogeneous across stations and dependent on a measured, station-level covariate), and three 
different numbers of cohorts (40, 60, 80). 
 
Accounting for effects of zero inflation and overdispersion on abundance 
 
Distributions other than the Poisson (equation 1), such as the zero-inflated Poisson (useful for 
count data with a high proportion of zeros), negative binomial (useful for cases in which the 



 15 

variance is greater than the mean), Poisson log-normal, or zero-inflated negative binomial, could 
be used to reflect the underlying abundance of delta smelt. If abundance is assumed to have some 
probability of being drawn from multiple distributions, then another option is to model 
abundance as a mixture distribution with two or more components. For example, the zero-
inflated Poisson and zero-inflated negative binomial models treat abundance as a two-component 
mixture distribution. In the first distribution, some proportion of the probability mass (or 
probability density) is at zero. The second distribution is applicable to the non-zero proportion of 
the probability mass. The second distribution is described by a parameter for the mean (zero-
inflated Poisson) or by parameters for the mean and overdispersion (zero-inflated negative 
binomial). 
 
Overdispersed data also may reflect a mixture distribution in which a certain set of 
environmental conditions lead to aggregation or regionally high abundance of delta smelt. In 
other words, it may be reasonable to hypothesize that the underlying distribution of abundance or 
density of delta smelt has three components: a zero-inflated component for events that lead to the 
true absence of delta smelt, a component that reflects typical densities of delta smelt, and a 
component that reflects abundances when conditions lead to aggregation or unusually high 
abundance. 
 
Annual recruitment of delta smelt 
 
There is no consensus on a single response variable that best represents recruitment. The DSST 
and CAMT wish to understand whether autumn survival of delta smelt and environmental 
attributes in autumn are associated with recruitment of delta smelt in spring, but wish to avoid 
confounding analyses of recruitment with survival of larvae, which could reflect other 
environmental attributes or environmental attributes in spring (and is outside our scope of work). 
 
We propose to conduct a stock-recruitment analysis. Several metrics derived from the modeled 
abundance in of delta smelt in December could be used as the stock, such as the estimates of 
abundance in December and a spatial diversity metric reflecting the distribution of delta smelt in 
December. 
 
Our discussions with the DSST identified three potential metrics of recruitment. The first is 
abundance estimates from the spring kodiak trawl. In this case, the underlying state variable is 
winter abundance (i.e., abundance of potential spawners). The second potential response variable 
is the length of delta smelt, which also would be derived from fish captured by the spring kodiak 
trawl. Use of this response variable reflects implicit hypotheses that length is related to body 
weight, body weight is related to fecundity, and fecundity is related to recruitment. The third 
potential response variable is abundance as derived from the 20 mm survey. In this case, the 
underlying state variable is abundance of larvae (i.e., production). 
 
As noted above, density of delta smelt in the 20 mm survey currently is calculated as the average 
catch per unit effort (CPUE). The accuracy of estimates of recruitment potentially could be 
improved by using data from replicate tows at each station and N-mixture models (Royle and 
Dorazio 2008). Three repeated tows would allow for estimation of capture probability, which in 
turn would improve the accuracy of the estimate of abundance at each station. The current 
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method assumes that detection probability is 1, thus that the abundance equals the number of fish 
caught. Given that detection probability is not 1, the number of fish caught almost certainly is a 
biased estimate of abundance. Spatial and temporal differences in detection probability as a 
function of environmental conditions could be evaluated as part of the recruitment analysis. 
Potential covariates for analyses of recruitment include but are not limited to covariates in 
autumn (e.g., outflow, turbidity, estimated survival), and temperature, prey, and predators during 
different seasons. 
 
Occupancy and habitat quality for delta smelt during autumn 
 
Previous efforts to identify the environmental conditions that define delta smelt habitat in 
autumn typically have used catches of delta smelt by the FMWT (Feyrer et al. 2007, 2011; 
Manley et al. 2015). These analyses implicitly have assumed that the detection probability of 
delta smelt in the FMWT equals 1.0. But if detection probability is not quantified, true presence 
(occupancy) and other estimators related to environmental covariates will be biased, and may 
lead to erroneous inferences about species occurrence or demographic parameters (Gu and 
Swihart 2004, MacKenzie 2005). In the absence of an explicit model of detection probability, 
covariates attributed to the quality of delta smelt habitat actually may have been associated with 
the probability of detection. 
 
Imperfect detection has been recognized as a potential source of bias in models of presence or 
abundance indexes of delta smelt, but has not previously been addressed quantitatively. We 
propose to use occupancy models (MacKenzie et al. 2003, 2006) to characterize habitat quality 
for delta smelt during autumn. Patch occupancy models (e.g., MacKenzie et al. 2003, Royle and 
Dorazio 2008) are a relatively straightforward and fast way to examine spatially explicit patterns 
in detection or non-detection. Patch occupancy models address occupancy and detection 
processes separately. Thus, these models estimate both the true underlying occupancy state 
(presence or absence) and the probability of detection given animals are present. The probability 
that the patch is occupied is modeled as a Bernoulli random variable, where 1 indicates presence 
and 0 indicates absence. Apparent absence may reflect either true absence or failure to detect 
animals that are present (false absence). The model outputs differentiate clearly between 
covariates associated with detection and those associated with occupancy. 
 
Patch occupancy models are applicable regardless of a species’ abundance, although there is a 
theoretical link between occupancy and abundance. As a species’ abundance increases, its 
probability of occupancy increases (MacKenzie and Nichols 2004), and abundance and 
geographic distribution are strongly related to probability of continued occupancy or persistence 
(Lande 1993, Foley 1994, Harris and Pimm 2008). Still, patch occupancy models may be 
especially useful when abundance of the species is relatively low. For example, the abundance of 
delta smelt as measured by the fall midwater trawl has been relatively low since the early 2000s. 
As a result, abundances of delta smelt estimated on the basis of the FMWT may provide little 
information beyond whether the species was present. Data on occupancy patterns of a species in 
a given system, especially over time, allow one to examine the strength of association between 
diverse environmental attributes and occupancy, or between interactions among those attributes 
and occupancy. Values of many environmental attributes have considerable spatial and temporal 
variability, and incorporating such environmental dynamics into occupancy models can allow 
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inference to which environmental attributes are components of habitat for the species and the 
relative contributions of those attributes to habitat quality. 
 
Model structure for estimation of patch occupancy 
 
We will describe the occupancy state of the Delta as  
 
zr,t ∼Bernoulli (ω r,t)       (10) 
 
where zr,t describes whether a given region (r) is occupied in a given month (t). Occupancy is a 
state variable with a Bernoulli distribution. The two states are occupied (z = 1) or unoccupied (z 
= 0). 
 
Occupancy of a given region (ωr,t) further can be modeled as a function of a matrix of covariates 
(Xr,t): 
 

!!!logit(ω r ,t )= Xr ,tβr ,t         (11) 
 
where β  is the vector of coefficients. The coefficients may be region-specific or time-specific to 
reflect alternative hypotheses about environmental variables associated with presence of the 
species among regions or time periods, which also could be interpreted as hypotheses about 
environmental variables associated with presence or quality of habitat. 
 
Modeling detection probability 
 
The observation process u addresses the probability of imperfect detection and is conditional on 
the state variable (occupancy). The probability of detection (d) is modeled as Pr (u = 1|z = 1); (1-
d) is the probability of false absence. The observation process is modeled as a Bernoulli (Bern) 
variable at the level of the samples as  
 

!!us(r ),t ~Bern(zr ,t ×ds(r ),t )      (12) 
 
The probability of detection [ds(r),t] also can be modeled as a function of covariates via a logit 
transformation: 
 

!!!logit(ds(r ),t )= Xs(r),tδ s(r ),t       (13) 
 
where the covariates reflect the conditions at the time of sampling.  
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Model of patch-level persistence and colonization 
 
Biological processes can be incorporated into occupancy models to analyze regional occupancy 
dynamics as a function of persistence (i.e., whether individuals are present in a given patch for 
successive time steps) and colonization. This approach is derived from metapopulation theory, 
and colonization and extinction dynamics can be modeled to accommodate the spatial 
arrangement of regions. We will use logistic regression to model the persistence process (ν) and 
the colonization process (ξ) as functions of covariates. The methods are similar to those we will 
use to model patch occupancy. The interpretation is slightly different, however, because the 
covariates are hypothesized to be associated with dynamic processes (i.e., the probability that 
delta smelt remain in a region given specific environmental conditions). This model may be 
useful if the environmental attributes of some regions are associated with a high probability of 
occupancy, but those regions cannot be colonized over the given time step.   
 
The model of patch-level persistence and colonization can be conceptualized as a hybrid between 
the abundance model, which tracks dynamics of a cohort during autumn, and the occupancy 
model, which estimates presence at a finer spatial resolution than the abundance model. We will 
use the patch-level persistence and colonization model to describe the cohort dynamics during 
autumn and to evaluate the strength of association between environmental covariates and the 
probability that delta smelt persist in or colonize certain regions during autumn.   
 
We will modify the patch occupancy model to allow Markov transitions among occupancy states 
in each region. The initial state condition is a function of the initial probability of being 
colonized: 
 

  
zr ,0 ~ Bern(ξr ,0 ) 	
  	
   (14)	
  
 
A region can be colonized if it was unoccupied in the previous month, and the probability of 
persistence of a population in a given region is νr,t	
  if the region was occupied in the previous 
month. 
 

  

zr ,t+1 ~
Bern(ξr ,t ) if zr ,t = 0

Bern(ν r ,t ) if zr ,t = 1

⎧
⎨
⎪

⎩⎪
	
   (15)	
   	
  	
  

The observation equation is the same as that for the patch occupancy model: 
 

  
us(r ),t ~ Bern(ds(r ),t × zr ,t ) 	
   (16)	
  
 
We again will estimate the initial occupancy states by fitting to the STN data for August when 
those data are available. We will estimate subsequent probabilities of colonization and 
persistence from the FMWT catches at each station within region r from September through 
December. Similar to the patch occupancy model, multiple regional configurations can be used 
to evaluate the dynamics of persistence (and its complement, extinction) and colonization over 
multiple cohorts and multiple annual hydrologic conditions. 
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Model fitting and comparison of hypotheses 
 
We will use maximum likelihood and Bayesian methods to fit all of the models. We will use the 
R package unmarked (Chandler et al. 2015) to fit maximum likelihood models for the patch 
occupancy and patch persistence models. We will use JAGS (Just Another Gibbs Sampler; 
http://mcmc-jags.sourceforge.net/) for Bayesian estimation in the models. The JAGS package 
implements Markov Chain Monte Carlo (MCMC) simulations and other samplers to obtain 
samples from posterior distributions of parameters. 
 
Assessment of alternative hypotheses requires the development of multiple model structures. The 
evaluation of alternative models depends on the statistical method being applied. For both 
maximum likelihood and Bayesian estimation, we will use information criteria to penalize 
complex models with many parameters. We will use the Akaike Information Criterion (AIC) to 
assess alternative models fit with maximum likelihood (Burnham and Anderson 2004). However, 
the AIC may have limited value for evaluating out-of-sample predictions (i.e., data that were not 
used to fit the model), particularly in cases in which the ecological system, and the modeled 
dynamics of the system, are relatively complex, but sample sizes are small and provide limited 
information about the underlying processes (Leeb 2008). Instead, alternative models fit with 
maximum-likelihood methods can be evaluated with cross validation (i.e., partitioning the data 
used to fit the model into a training set and a validation set) and a mean square error of predicted 
versus observed values. We will use the Deviance Information Criterion (DIC) (Spiegelhalter et 
al. 2002) or Widely Applicable Information Criterion (WAIC) (Wantanabe 2010) to assess 
alternative hypotheses that were addressed with Bayesian estimation. Both the DIC and WAIC 
are useful for model selection because they provide optimal, asymptotic out-of-sample 
predictions. 
 
 
RELATIONS TO ONGOING MODELING EFFORTS 
 
Our proposed models differ in three substantive ways from other models of the dynamics of delta 
smelt that currently are being developed. First, although the theory of patch occupancy is well 
established and the models have been applied to diverse taxonomic groups, the models have not 
previously been applied to address the detection and non-detection of delta smelt. The presence 
and absence of delta smelt previously was assumed to serve as a surrogate measure of habitat 
quality and quantity (e.g., Feyrer et al. 2011, Manly et al. 2015), yet the latter analyses did not 
differentiate between nondetection and absence. Patch occupancy models likely will represent 
the underlying ecological processes more accurately. Much of the statistical structure for 
estimating dynamic patch occupancy models has been developed and implemented in the R 
package unmarked (Chandler et al. 2015), and thus models can be developed and fit relatively 
quickly. JAGS code also exists for Bayesian estimation of dynamic patch occupancy models 
(e.g., Kéry and Schaub 2012). 
 
Second, the abundance model we propose to implement focuses on a cohort’s trajectory from 
August through December, whereas Newman et al. are developing a model of the full life cycle 
of the fish. Accordingly, our model is somewhat simpler than that of Newman et al. For example, 
our proposed model includes a single movement function for the age-0 and age-1 delta smelt 
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captured by the FMWT, whereas Newman et al. have a different movement function for each of 
the life stages. The relatively simple structure of our model allows us to explore hypotheses 
about environmental covariates associated with survival and movement during autumn more 
easily than would be the case with the Newman et al. model. Still, both our proposed model and 
the work by Newman et al. involve fitting models to monthly catches by the FMWT in four 
regions. Both our investigative team and the Newman et al. team hope that the modest 
redundancy in model-fitting methods, spatial structure, and exploration of hypotheses related to 
movement will useful to both groups. 
 
The third distinction between our proposed models and ongoing efforts is that we are proposing 
to evaluate recruitment as a function of factors that may affect delta smelt during autumn. The 
estimates of recruitment that currently are being computed (station-level CPUE in the 20 mm 
survey) do not account for imperfect detection. We propose to improve the estimates of 
recruitment by using models that estimate abundance on the basis of repeated samples over time 
(i.e., N-mixture models; Royle and Dorazio 2008). Our estimates of recruitment will allow us to 
use the dynamic patch occupancy models to compare the spatial distribution of delta smelt in 
December with the spatial distribution of recruitment the following April. Furthermore, we can 
compare the spatial distribution of density of delta smelt in December with the spatial 
distribution of recruitment density in the following April on the basis of our abundance model 
and the estimates of abundance from the N-mixture models. 
 
All of our proposed models can be modified easily to accommodate updated data (e.g., longer 
time series), data with higher temporal resolution or greater spatial extent, different covariates 
that reflect different hypotheses about relations between delta smelt and natural or anthropogenic 
environmental attributes, and more-accurate estimates of gear efficiency or other aspects of 
detection probability. If data are sufficient, our models can accommodate different delineations 
of regions. After we identify covariates that are strongly associated with occupancy or abundance, 
we can vary values of covariates to conduct sensitivity analyses or to project how delta smelt 
may respond to environmental change. 
 
Pending research by Rob Latour may inform our estimates of detection probability. Latour is 
beginning to assess two assumptions about estimates of delta smelt abundance that are based on 
CPUE: that samples are independent rather than temporally or spatially correlated, and that catch 
probability has been temporally and spatially constant. Latour will examine these assumptions 
for both the FMWT and the spring kodiak trawl survey. The results of the first analysis can be 
used to structure the random effects in detection probability, , to reflect temporal or spatial 
correlation structures. He also will assess whether environmental covariates are associated with 
catch probability and, in turn, projected CPUE values and probabilities of false absences. The 
results of the second analysis can be used to suggest covariates of capture probability for 
inclusion in the abundance model and covariates of detection probability for inclusion in the 
patch occupancy and patch persistence models. 
 
  

!!ν s(r ),t
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RESEARCH CHALLENGES 
 
Trade-offs among models of abundance 
 
Overdispersed and mixture distributions 
 
The simplest model of abundance is the Poisson distribution, in which the mean and variance are 
equal, yet there may be a high probability that no individuals of rare species are present. Thus, a 
zero-inflation process, such as the zero-inflated Poisson, is needed to describe the abundance of 
delta smelt. In addition, there are infrequent cases in which a relatively high number of delta 
smelt are caught, suggesting that the underlying abundance is high. Distributions in which there 
are many zeros and, infrequently, high numbers are challenging to describe statistically. 
Nevertheless, we would like our sampling model to reflect both of these aspects of the 
underlying abundances of delta smelt. The infrequent high catches suggest that the variance is 
greater than the mean and that overdispersion needs to be incorporated into the sampling 
distribution. Two statistical distributions, the negative binomial and the zero-inflated negative 
binomial, can be used to incorporate this additional variability (i.e., the overdispersion in the 
underlying abundance). We also may consider other methods for evaluating the unusual 
conditions under which high numbers of delta smelt are observed, such as a multi-component 
Poisson. There are trade-offs between using a method that accounts for overdispersion (e.g., the 
negative binomial) and using a more restrictive statistical distribution (e.g., the Poisson) and 
attempting to model the processes that lead to the overdispersion (e.g., a two-component Poisson 
distribution). 
 
To illustrate, suppose that detection probability is 1 and 100 tows were conducted, with an 
average of 15 fish was captured per tow. Under the Poisson distribution, the 95% interval is (8, 
23). In addition, suppose that the number of fish detected in two of the tows was 100—i.e., much 
greater than the average. In this hypothetical example, the catch data cannot be described as a 
pure Poisson process. If abundance is modeled as a Poisson random variable, then the estimated 
average number of fish captured will be 17, but the data will appear to be overdispersed relative 
to the estimated average (a comparison of model degrees of freedom to residual variability will 
indicate this overdispersion). One option for addressing the apparent overdispersion would be to 
use a negative binomial model. If a negative binomial model is fit to these catch data, then the 
overdispersion parameter is estimated to be 5.3 and the 95% interval around the average of 17 is 
(4, 35). Another option is to fit a two-component Poisson distribution to the catch data. In this 
case, the model will estimate a first group of catches with a mean of 15 and a second group of 
catches with a mean of 100, and will estimate the probability that a given catch will be drawn 
from either group.  
 
We have allowed for heterogeneity in the detection probability among stations through covariate 
effects and random effects (Equation 13). Both of these processes also could be responsible for 
zero inflation and overdispersion in the station-level FMWT catches. Thus, one of the research 
challenges will be evaluating alternative model structures that reflect hypotheses about whether 
overdispersion is occurring in the state process, in the observation process, or both.   
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Multi-state approaches 
 
Abundance generally is considered to be an informative state variable for monitoring animal 
populations. However, estimating abundance with high precision can be expensive and either 
impractical or not feasible logistically. Occupancy has been proposed as an alternative to 
abundance, particularly for monitoring across large spatial extents, but occupancy may not be 
highly sensitive to changes in abundance. 
 
A potential method for reconciling trade-offs between measurements of abundance and 
occupancy is to use ordered categorical analysis (multistate occupancy models; MacKenzie et al. 
2009). These analyses use data on relative abundance to classify the abundance of each location 
as, for example, none, low, medium, or high. Use of ordered categories allows one to estimate 
the proportion of locations in each state. If data are collected for multiple time steps (e.g., months 
or years), then inference can be drawn about trends in the proportion of locations in each state.  
 
Multistate occupancy models may be useful if there is a testing procedure in which the results of 
the test are not good indicators of the underlying continuous state. In this case, ranking the output 
of the test (i.e., placing each outcome of the test into one of a number of bins) may reduce the 
error induced by the testing procedure. A multistate method also could be useful when the 
relation between catches and abundances has high uncertainty, as may be the case with estimates 
of the true abundance of delta smelt that are derived from fall midwater trawl catches. 
 
In an ordered categorical analysis, one defines a set of C categories for an ordinal response 
variable Y (e.g., low, medium, and high), and an associated continuous covariate X. One way of 
modeling these categories is to imagine a continuous underlying random variable in which each 
category is a discrete version of the continuous distribution. A latent response variable Z can be 
defined to represent the underlying continuous variable. The probit model for an ordinal response 
uses a normal distribution for Z, but any continuous distribution, including a mixture of 
distributions, could be used for Z. The probability of an observation yi being in category c is the 
probability that Zi lies within the cutoff-off points for the category. The normal or a mixture of 
normal distributions may be used for Z to model such ordered categorical analysis in a Bayesian 
framework (Albert and Chib 1993). The output from these models is the probability that the true 
underlying state lies in a given category.   
 
In our case, the underlying state dynamics include movement and survival for the latent 
abundance in each region and time Nr,t,. Thus, we would have a time series of such ordinal 
observations Yr,t across each annual cohort. Modeling methods for time series of ordered 
categorical variables that were developed for financial (Chib 1996) and medical (Albert and 
Chib 2001) applications could be tailored to our objectives. In addition, recent efforts to develop 
more-general methods for Bayesian nonparametric regression modeling (Papageorgiou et al. 
2015, De Yoreo and Kottas. Bayesian nonparametric modeling for multivariate ordinal 
regression. Available from http://arxiv.org/abs/1408.1027) also could be applicable.   
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Other models of dependence between abundance and detection  
 
The observation process can be modeled as the relation between probability of detection and 
abundance. The equations for detection probability can be modified to reflect probability masses 
at abundance values 1, 2, ..., ∞ rather than modeling all of the mass at 1, which is the case when 
one is modeling occupancy. Our observation model estimates the probability of detecting Ys(r),t 
delta smelt in a sample at station s and time t given that there are Nr,t individuals available for 
sampling in the region. The probability of detection at each of the stations at time t is a function 
of the number available at each station Ns(r),t: 
 
ds(r),j(t) = 1 − (1 − ms(r),j(t))Ns(r),t,  (17) 
 
where m=(0,1) from repeated samples j = 1, ..., Ks(r),t within time period t. The probability of 
detecting an individual animal is m, and K is the total number of samples taken from all stations 
in a given region. The station-specific estimate of abundance [Ns(r),t] could be based on the 
proportion of volume sampled at the station [ws(r),t] relative to the volume of the region (Wr); 
this is the approach that Newman et al. currently are taking. However, this method is quite 
challenging because Ns(r),t is a latent variable (that is, a variable that is not observed directly). 
As a result, it is necessary to integrate across all possible levels of Ns(r),t (i.e., all possible 
numbers of individuals available at a station). Integrating across all possible abundances is time-
consuming, and these models are likely to become unstable when the data are sparse (Royle and 
Dorazio 2008).  
 
Alternatively, it is unnecessary to integrate across all values of N if one assumes that the 
detection probability (d) and the number of individuals available for sampling (N) are 
functionally independent (Royle and Nichols 2003). The relation then reduces to  
 
Pr(y|d, N) = Pr(y|d)Pr(N > 0) + I(y = 0)Pr(N = 0) (18) 
 
where I(y = 0) reflects that if the true abundance is zero (N = 0), then no individuals will be 
detected (i.e., this methods assumes that false positives are impossible). The probability of 
occupancy (ψ) in this case is a zero-inflated binomial and is equal to the probability that some 
number of individuals are available for sampling [Pr(N > 0)] (MacKenzie et al. 2002). Thus, the 
model that assumes functional independence is equivalent to the model described in equation 10. 
 
Application of this approach is simplified if there is variation in sampling effort, whether in 
terms of time per fixed area or volume sampled or in terms of fixed effort but variable area or 
volume. Variation in sampling effort allows one to examine whether detection probability varies 
as a function of sampling effort. Similarly, variation in values of environmental covariates is 
necessary to explore whether those covariates are associated with detection probability.  
 
We can estimate the sampled area as the volume sampled at each station in each region, and 
model the local abundance as a function of volume, although the ability to estimate detection 
probability depends on the differences in volume sampled. For example, if abundance is assumed 
to have a Poisson distribution, then the local abundance at a given station in a given region [s(r)] 
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during a given time step (t) would be modeled as 
 
Ns(r),t ∼Poisson (μr,t×ws(r),t/Wr),  (19) 
 
where μr,t is the mean abundance in a given region (r) during a given time step (t). A similar 
model for Ns(r),t could be developed in which abundance is assumed to have a negative binomial 
distribution, with an additional parameter estimating the degree of overdispersion relative to the 
Poisson. 
 
Estimates of detection probability 
 
Replicate samples from each region during each time step are necessary to estimate probabilities 
of detection and occupancy. It is possible to use spatial replicates (e.g., samples from multiple 
stations within a region) during a given time step, and we will do so in our models given the 
constraints of the data. However, violations of the assumptions that accompany use of spatial 
replicates can bias estimates of abundance (Kendall and White 2009). Use of replicate samples 
within a given time step at multiple locations has a greater likelihood of avoiding biased 
parameter estimates than use of spatial replicates. We stress that uncertainty in parameter 
estimates will be reduced if such samples are taken more frequently. Such sampling designs have 
been used in pilot projects with the goal of improving the quality of inference on the underlying 
delta smelt dynamics and probability of detection given delta smelt are present (Polansky et al. 
2014). Repeated sampling at stations throughout the range of delta smelt would provide similar 
improvements in inference across a broader range of environmental gradients as is being 
developed by Newman et al. in a proposal to monitor entrainment of delta smelt. Our models will 
allow for incorporation of more-robust data if and when they are collected. 
 
Similarly, there is little information on detection probabilities associated with different sampling 
methods or gear types. The information base for estimation of detection probability would be 
increased by conducting simultaneous surveys with multiple gear types, repeating these surveys 
at a given station within a relatively short window of time, and conducting such surveys at many 
stations. Repeating samples on the same day at the same station is useful, but it will be even 
more informative to vary the position of the tow line between successive samples on that day.  
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TASKS AND DELIVERABLES 
 
We have organized the proposed work into six major tasks: abundance modeling, expert 
elicitation of predation covariates, recruitment modeling, patch occupancy modeling, modeling 
of patch-level persistence and colonization, and project management. Some elements of the tasks 
will occur in synchrony and some sequentially. Project management will cover the full project 
period. 
 
Estimated timetables assume that our investigative team has been provided with clean, reliable 
data before initiating a given analysis (as necessary, following collaborative generation of 
alternative hypotheses). We have not budgeted time or money for quality control or data cleaning. 
For all tasks except project management, we anticipate presenting initial results to CSAMP 
groups (e.g., the DSST and CAMT) and, on request, to other audiences, including but not limited 
to public water agencies or nongovernmental organizations. Our estimated delivery dates account 
for an iterative process of presentation, discussion, and refinement of deliverables. We anticipate 
submission of manuscripts on each of the five analytical tasks to peer-reviewed scientific 
journals. In general, we expect to submit those manuscripts within about two months of the 
delivery dates indicated below. 
 
Deliverable (assuming start date of 1 September 2015) Delivery date 
Outputs of abundance model February 2016 
Elicited data on predators of delta smelt February 2016 
Outputs of recruitment models April 2016 
Outputs of patch occupancy models June 2016 
Outputs of persistence and colonization models August 2016 
Any derived data included in the analyses and standardized 
metadata; the data and metadata will be deposited in one or 
archives that are publicly available 

winter 2017 

Analytical scripts and associated metadata; these will be 
deposited in one or archives that are publicly available 

winter 2017 
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