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Executive summary 

The delta smelt individual-based life cycle model in R (IBMR) simulates four processes of the San 
Francisco Estuary’s (SFE) delta smelt population: reproduction, movement, growth, and mortality. 
The model provides a mechanistic description of the life cycle, synthesizing the most recent life 
history information and environmental data measured at spatiotemporal scales relevant to delta 
smelt ecology and management. Environmental conditions are represented by temperature, 
turbidity, Old and Middle River flow, and prey density.  

The IBMR is a modification of the IBM in Fortran (DSIBM), presented by Rose et al. (2013a and 
2013b). By design, many features of IBMR are identical to Rose’s original DSIBM, but IBMR 
was developed to be more accessible by using a more common statistical program and providing 
a set of open-source code that can be accessed and run by any R-user.  

IBMR was calibrated to abundances and growth rates estimated for the wild delta smelt population. 
The model is suitable for assessing the population growth potential of delta smelt given changes 
to abiotic and biotic conditions in the SFE.  
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Modifications in the current IBMR v3 

Several variations of a delta smelt individual-based life cycle model have been developed since 
Rose et al. (2013a) published their original model (DSIBM). Since 2018, at least three independent 
groups have modified or updated the DSIBM. A summary of the version history of the model is 
included in Table 1. In preparation for the CSAMP Delta Smelt Structured Decision Making 
Process in 2021, the IBMR was further modified (IBMR v3). All data were updated for years 1995 
through at least 2014; the bioenergetics model was updated to include the 12 prey types developed 
by Kimmerer for DSIBM v2 (Appendix A), and reproductive parameters were updated based on 
the most recent published information (Damon et al. 2016). IBMR v3 retained the monthly time 
step of IBMR v1 and v2. The spawning model was updated to include a third temperature-
dependent spawning event in April, allowing up to 3 batches of eggs per spawner, conditional on 
temperature and survival (LaCava et al. 2015; Kurobe et al. 2016). Finally, the consumption 
component of the bioenergetics model was updated to include the turbidity effect on foraging rates 
documented by Hasenbein et al. (2016) and for other fish species occupying a similar ecological 
niche to delta smelt (Pangle et al. 2012). 

 

Data 

Five physical and biological variables, representing observed Delta conditions during 1995-2014, 
drive simulated population dynamics: prey density, Old and Middle River flow, delta smelt 
distribution, water temperature, and Secchi depth. All data used to summarize IBMR variables 
may be found online (https://github.com/CSAMP). All variables except Old and Middle River 
flow had dimensions year y, month m, and spatial strata s (Table 2). Old and Middle River flow 
was a y x m matrix, and prey densities included a fourth dimension p indexing prey type. 

Prey density. Prey density estimates 𝑃𝑃𝑃𝑃ymsp for 12 zooplankton prey types p and years 1989-2015 
were developed by Wim Kimmerer (Appendix A). Daily log prey carbon densities (mgC m-3), 
estimated from positive catches, and daily proportion zero catch were summarized from the 
Interagency Ecological Program’s zooplankton survey and the CA Department of Fish and 
Wildlife (CDFW) 20-mm survey. Monthly means of the daily values were used to simulate prey 
densities. 

Old and Middle River flow. 𝑂𝑂𝑂𝑂𝑂𝑂ym was the monthly average of the daily sum of tidally filtered 
flows (ft3 s-1) from two adjacent channels of the San Joaquin River basin, Old and Middle Rivers 
(Fig. 2). OMR data were available from US Geological Survey (USGS) streamflow databases 
(https://waterdata.usgs.gov). Much of the daily streamflow gauge data was missing. If data for one 
river was missing, daily OMR was predicted from a linear model of the flow in the remaining river, 
and if data for both rivers was missing, the model proposed by Andrews et al. (2016) was used to 
estimate missing OMR from San Joaquin River flows and exports from South Delta water 

https://github.com/CSAMP
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diversions. Daily San Joaquin River flow and export data were available from the Dayflow 
database (https://data.cnra.ca.gov/dataset/dayflow). 

Fish distribution. Observed delta smelt distributions 𝑃𝑃𝐷𝐷yms (proportion in each stratum) were 
developed from 20-mm, Midwater Trawl, and Spring Kodiak Surveys. Townet Survey data were 
not used, because tow volume data were unavailable before 2003, use of Townet data would only 
leverage one additional month of distribution information (August), and in most year-months with 
a concurrent 20-mm Survey sample, delta smelt were observed in fewer spatial strata in the Townet 
Survey (in 7 of 13 years). Fish survey data were made available online by CDFW 
(ftp://ftp.dfg.ca.gov/). Monthly observed catch densities (catch/volume sampled) were assigned to 
the 12 spatial strata, and month-strata mean observed densities were expanded to population 
abundance by multiplying by strata volumes. Strata volumes were estimated by Derek Hilts 
(USFWS; Bay-Delta Office) using DSM2. Estimated population abundances in each spatial 
stratum were then converted to proportions of the total abundance, which were interpreted as 
observed occupancy probabilities.  

Surveys were not completed in all year-months, and in some months, no fish were observed 
(mostly February, March, and August). Distributions from the prior month were assumed when 
observations were missing. The fish distribution data was characterized by an increasing level of 
zero-inflation, resulting in zero observed occupancy of many spatial strata towards the end of the 
time series. 2014 was selected as the terminal cohort of observed spatial distributions (last 
observed in April 2015) in order to mitigate this issue.  

Delta smelt densities in the South Delta spatial stratum were particularly difficult to characterize, 
with many instances in which entrained delta smelt were observed at the pumping facilities, but 
not in the South Delta fish surveys. The Delta Smelt Life Cycle Model (Smith et al. 2021) included 
estimates of the fraction of the population that entered the South Delta and were eliminated from 
the population (entrained). These estimates of proportional entrainment loss were developed by 
integrating multiple data sources, including salvage or observations of delta smelt at the pumping 
facilities. Life Cycle Model estimates of proportional entrainment were interpreted as the fraction 
of the population in the South Delta, and adopted as IBMR estimates of the South Delta distribution 
of delta smelt. 

An alternative treatment of the South Delta distributions used the fish surveys to estimate 
proportion in the South Delta, like other strata; however, delta smelt densities in the South Delta 
stratum were depleted by entrainment, resulting in a negative bias and underestimation of the 
proportion of the population in this region of the Delta. Further, on many occasions, no fish were 
observed in the South Delta surveys, but one or more fish were salvaged, indicating that South 
Delta survey data were more zero-inflated than salvage data.  

The conceptual model for the entrainment process is that under certain conditions, a fraction of the 
population is induced to occupy a portion of the Lower San Joaquin River, where they become 
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vulnerable to advective flows (OMR) into the South Delta. Over a period of 1-2 weeks, the group 
of fish that moved into the South Delta becomes depleted by water exports until no or few fish 
remain. The model of delta smelt distributions did not account for the conditions leading fish to 
occupy the South Delta; it only accounted for the fraction of fish that were originally observed 
there. 

Temperature. Water temperature data 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms (Celsius) for years 1990-2010 were summarized 
from DSM2 hydrodynamic simulations by Derek Hilts (Fig. 2). The terminal year of the DSM2 
Temp dataset, 2010, limited the number of years available for the IBMR by at least 4 years. A 
second set of water temperature data was therefore summarized from all available online data 
collected by the CDFW and FWS during Delta fish monitoring programs (ftp://ftp.dfg.ca.gov/; 
https://www.fws.gov/lodi/). The second water temperature dataset spanned years 1959-2020, but 
prior to 2011, data for some year-month-strata combinations were missing or sparse, with only a 
single sample. 

The water temperatures that would have been simulated by DSM2 for missing years, 2011-2014, 
were predicted using a general linear model of DSM2 monthly means  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms as a function of 
season, spatial strata, and monthly mean temperatures measured by fish monitoring programs 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� yms. The best model of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms was identified using backwards selection, starting with a 
full model, having an effect for each stratum and season, and eliminating non-significant spatial 
effects (acceptance level < 0.05), one coefficient at a time, before eliminating non-significant 
seasonal effects. The model was fit to data from years 1990-2010, and used to predict 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms 
from measured 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� yms for years 2011-2014. See Appendix B for details of the model to predict 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms.  

Secchi depth. Secchi depth data 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms (cm) were used as an index of turbidity. Like 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� yms, 
Secchi depths for years 1959-2020 were summarized from all CDFW and FWS databases available 
online (Fig. 2). Means for each year-month-stratum combination were summarized, but data were 
not available for all strata in all year-months. Missing data were estimated from general linear 
models of the remaining Secchi data in other spatial strata. The best general linear model for each 
stratum was selected using backwards selection, beginning with the full model, having a separate 
coefficient for each spatial stratum, and eliminating non-significant coefficients, one at a time. See 
Appendix B for details of the model to predict missing 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms. 

 

Model 

The IBMR v3 (Fig. 3) includes cohorts spawned from 1995 to 2014. A cohort year begins at the 
beginning of simulated spawning in February and ends the following January. Reproduction, 
movement among 12 spatial strata, growth, and mortality of a closed population are modeled (Fig. 
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1). The simulated population in one year depends on the characteristics of the simulated population 
in the previous year; therefore, it is important to establish stable length and spatial distributions 
before simulating the 1995-2014 time series. IBMR establishes stable length and spatial 
distributions by looping through a representative sequence of years before simulating the 1995-
2014 time series. The first (four) loops are discarded as a burn-in. This results in median fork 
lengths of 74 mm in the initial month of the simulation, February 1995. 

Starting conditions. After the super-individual approach of the DSIBM, a super-adult approach 
was developed for IBMR. At the end of each simulated year (end of January), the adult population 
was reset to 200 super-adults. Population growth each was then then number of adults after 12 
months, the following January, divided by 200. The super-individual approach was developed to 
speed up computation time by avoiding very large numbers of simulated individuals while also 
avoiding ‘crashes’ when the simulated population declines to zero. 

The model is initialized with adult spawners in February and assumed weights of adult delta smelt, 
generated from a lognormal distribution. Weights are converted to lengths using the length-weight 
equation derived by Kimmerer et al. (2005), 

(1) 𝐿𝐿iym = � 𝑊𝑊iym

1.83𝑒𝑒−6
3.82

,  

where Wiym is weight in grams and Liym is fork length in millimeters of individual i in year y and 
month m of the simulation.  

Reproduction. Four reproductive sub-processes are modeled: maturation, sex ratio, fecundity, and 
egg to larval survival. Simulated delta smelt reproduction occurs during the months of February, 
March, and April. During spawning months, maturity is stochastically assigned using a Bernoulli 
distribution and a length-based, logistic regression model of maturation probability 

(2) 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇iym~Bernoulli �1 �1 + 𝑇𝑇−0.1∗�𝐿𝐿iym−60��� �, 

where 60 mm represented an assumed length at 50% maturity and 0.1 represents an assumed slope 
coefficient. With this maturation model, the probability of maturity increases from approximately 
0.05 at 48 mm to 0.95 at 72 mm (Fig. 4). This is in contrast to the DSIBM, which used a knife-
edged maturation model, in which individuals less than 60mm FL had no probability of maturation 
and spawning. 

Sex is also stochastically assigned to simulated fish using a Bernoulli distribution, with a 0.48 
probability of female assignment, based on Spring Kodiak Trawl samples of adult delta smelt 
during the spawning season 

(3) 𝑓𝑓𝑇𝑇𝑇𝑇𝑚𝑚𝑓𝑓𝑇𝑇i~Bernoulli(0.48). 



 
 

7 
 

Water temperature is assumed to affect several components of the reproductive and early life 
history of delta smelt, including the number of potential batch spawns, egg to larval survival, and 
length at first feeding (Rose et al. 2013a). Mature females spawn up to three batches of eggs, with 
one potential batch in both February and March and an April batch if an individual occupies a 
stratum with Temp < 17.9°C, based on the maximum observed spawning temperatures noted by 
Damon et al. (2016). Population egg production is based on the distribution of L, the length-based 
fecundity model estimated by Damon et al. (2016) (Fig. 4), and the simulated abundance of mature 
females (adults; AD)in each year-month-stratum 𝑛𝑛ADyms|𝑓𝑓𝑇𝑇𝑇𝑇𝑚𝑚𝑓𝑓𝑇𝑇,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇. Total egg production 
in each year-month-stratum 𝑛𝑛Eggyms of the spawning season is the sum of fecundity of mature 
females in that stratum  

(4) 𝑛𝑛Eggyms = ∑ 0.0183 ∗ 𝐿𝐿jym2.7123𝑛𝑛ADyms|𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒,𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒
𝑗𝑗=1 . 

Simulated eggs transition to feeding larvae at the end of the month of spawning. Survival of eggs 
to the larval life stage 𝐷𝐷LRVym (Fig. 5) is the product of proportion hatching 𝑃𝑃Hatchs and egg to 
larval survival 𝐷𝐷YSyms, 

(5) 𝐷𝐷LRVyms = 𝑃𝑃Hatchs ∗ 𝐷𝐷YSyms, where 

(6) 𝑃𝑃Hatchs = −2.35 + 0.45 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms + 0.016 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms2  and 

(7) 𝐷𝐷YSyms = 𝑇𝑇−0.035∗�−10.1−1.5∗𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇yms�. 

Parameters defining the 𝑃𝑃Hatchs and 𝐷𝐷YSyms models (Eq. 6-7) were given by Bennett (2005) 
(Bennett’s Fig. 10) and included temperature effects. Number of days as a yolk-sac larvae 
(−10.1 − 1.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms) is multiplied by daily yolk-sac larval mortality of 0.035 (Eq. 7), 
estimated by Rose et al. (2013a), to predict  𝐷𝐷YSyms. 

Initial simulated lengths 𝐿𝐿LRV for larvae at the end of their first month, before entering the feeding 
population in the bioenergetics model, are calculated 

(8) 𝐿𝐿LRVi = 5.92 − 0.05 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms, 

and 𝐿𝐿LRVi are converted to weights using the larval length-weight equation derived by Kimmerer 
et al. (2005), 

(9) 𝑊𝑊iym = 5𝑇𝑇−6 ∗ 𝐿𝐿iym3 .  

Movement. A Eulerian random walk model was developed to simulate delta smelt movement 
among spatial strata that approximates the observed spatial distributions of the population. Fish 
are randomly assigned to one of 𝑛𝑛STR spatial strata based on observed spatial distributions 𝑃𝑃𝐷𝐷yms 
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and a set of rules for movement. Starting strata for each individual i at the end of January 1995 are 
categorically distributed, with probabilities equal to 𝑃𝑃𝐷𝐷yms 

(10) 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚iym~Categorical�𝑃𝑃𝐷𝐷yms�. 

Starting strata for newly spawned fish are assigned to the parental spatial strata. In each subsequent 
month, categorical distribution probabilities to randomly assign strata are the product of observed 
spatial distributions and a set of rules for month-to-month movement that allow residence in a 
stratum, movement between adjacent strata, or movement between strata separated by only a single 
stratum. The movement rules prevent simulated movement to more distant strata (e.g., month-to-
month movement between Yolo and Suisun Bay strata is not modeled). Rules for movement 
between stratum s and s′ are represented by an 𝑛𝑛STR x 𝑛𝑛STR matrix 𝑂𝑂ss′ of 1s and 0s, where 1s 
permit simulated movement between a pair of spatial strata and 0s prevent simulated movement 

(11) 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚iym~Categorical�𝑃𝑃𝐷𝐷yms ∗ 𝑂𝑂s(1:𝑛𝑛STR)�. 

Growth 

The bioenergetics growth model described by Rose et al. (2013) was a system of equations 
estimating daily delta smelt growth in body mass as a function of rates of consumption Ciym, 
metabolism Riym, egestion Fiym, excretion Uiym, activity SDAiym and spawning losses 𝐷𝐷𝑇𝑇iym in for 
individual i in year y and month m (Eqs. 12-24). In this application, daily growth increments were 
scaled to monthly increments by multiplying by the number of days in each month. A set of 
bioenergetics model coefficients, specific to each life-stage l to model each rate were listed in Rose 
et al. (2013a) (Fig. 7); in the notation below, these fixed coefficients are underlined to distinguish 
them from dynamic quantities that may vary by time period.  

(12) 𝑊𝑊iy(m+1) = 𝑊𝑊iym ∗ �1 + 𝑛𝑛.𝑑𝑑𝑚𝑚𝑑𝑑𝑠𝑠𝑓𝑓 ∗ 𝑒𝑒𝑇𝑇iym
4814

∗ �𝐶𝐶iym − 𝑂𝑂iym − 𝐹𝐹iym − 𝑈𝑈iym − 𝐷𝐷𝑃𝑃𝑆𝑆iym�� −

𝐷𝐷𝑇𝑇iym, where 

(13) 𝑂𝑂iym = 𝑚𝑚𝑚𝑚l ∗ 𝑊𝑊iym
𝑏𝑏𝑚𝑚l ∗ 𝑇𝑇𝑅𝑅𝑅𝑅l∗𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇yms, 

(14) 𝐹𝐹iym = 𝐹𝐹𝑚𝑚l ∗ 𝐶𝐶iym, 

(15) 𝑈𝑈iym = 𝑈𝑈𝑚𝑚l ∗ �𝐶𝐶iym − 𝐹𝐹iym�, 

(16) 𝐷𝐷𝑃𝑃𝑆𝑆iym = 𝐷𝐷𝑑𝑑l ∗ �𝐶𝐶iym − 𝐹𝐹iym�, and  

(17)  𝐷𝐷𝑇𝑇iym = 0.15 ∗ 𝑊𝑊iym 

The conversion of prey to delta smelt biomass was expected to be less efficient for Limnoithona 
prey because of its lower energy density 𝑇𝑇𝑑𝑑p. The lower 𝑇𝑇𝑑𝑑p of Limnoithona was accounted by 
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adjusting the efficiency at which simulated consumption was converted to delta smelt weight, 
represented by the ratio 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓 4814⁄  (Eq. 12). 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓 was the energy density of prey consumed, 
reduced by the fraction of consumed energy corresponding to Limnoithona (Eq. 18 and 19), and 
4,814 J/g was the energy density of delta smelt. The energy density of Limnoithona (1,813 J/g) 
was assumed to be 30% less than that of all other prey items (2,590 J/g). 

(18) 𝑇𝑇𝑇𝑇iym = 1813 ∗ 𝐿𝐿𝑖𝑖𝑇𝑇𝑛𝑛𝐿𝐿iym + 2590 ∗ �1 − 𝐿𝐿𝑖𝑖𝑇𝑇𝑛𝑛𝐿𝐿iym�, where 

(19) 𝐿𝐿𝑖𝑖𝑇𝑇𝑛𝑛𝐿𝐿iym =

1813∗𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶iym∗

⎝

⎜
⎛

𝑃𝑃𝑃𝑃ym(LImno)∗𝑉𝑉(Limno)l
𝐾𝐾(Limno)l

∑
𝑃𝑃𝑃𝑃ymr∗𝑉𝑉rl

𝐾𝐾rl
12
𝑟𝑟=1

⎠

⎟
⎞

∑ 𝑒𝑒𝑒𝑒q∗𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶iym∗

⎝

⎜
⎛

𝑃𝑃𝑃𝑃ymq∗𝑉𝑉ql
𝐾𝐾ql

∑
𝑃𝑃𝑃𝑃ymr∗𝑉𝑉rl

𝐾𝐾rl
12
𝑟𝑟=1

⎠

⎟
⎞12

𝑞𝑞=1

 

where 𝑃𝑃𝑃𝑃ymp was the prey density of prey type p. 

The maximum possible consumption rate 𝐶𝐶maxiym was a measure of potential foraging rate, 
expressed as a proportion of body weight per day (Eqs. 20 and 21). Foraging arena theory suggests 
that fish reduce their time spent foraging to mitigate perceived risk of mortality, at the expense of 
forgone foraging and growth. Two environmental constraints on delta smelt foraging were 
considered: temperature 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ym effects (𝐾𝐾𝑆𝑆iym ∗ 𝐾𝐾𝐾𝐾iym) and turbidity 𝑇𝑇𝑚𝑚𝑚𝑚𝑇𝑇iym effects (𝐾𝐾𝑇𝑇iym). 
Relationships between Temp, C, and R are shown in Fig. 6.  

(20) 𝐶𝐶iym = 𝐶𝐶maxiym ∗ ∑ �

𝑃𝑃𝑃𝑃ymp∗𝑉𝑉pl
𝐾𝐾ql

∑
𝑃𝑃𝑃𝑃ymp∗𝑉𝑉pl

𝐾𝐾rl
12
𝑟𝑟=1

�12
𝑞𝑞=1 , where 

(21) 𝐶𝐶maxiym = 𝑚𝑚𝑆𝑆l ∗ 𝑊𝑊iym
𝑏𝑏𝑏𝑏l ∗ 𝐾𝐾𝑆𝑆yms ∗ 𝐾𝐾𝐾𝐾yms ∗ 𝐾𝐾𝑇𝑇yms 

Rose et al. (2013) assumed a Temp-Cmax model for delta smelt (𝐾𝐾𝑆𝑆yms and 𝐾𝐾𝐾𝐾yms; Eq. 12 and13) 
that reduced foraging time as water temperatures increased above 23°C (Fig. 6).  

(22) 𝐾𝐾𝑆𝑆yms =
𝐶𝐶𝐶𝐶1l∗𝑒𝑒

1
𝑇𝑇0l−𝐶𝐶𝐶𝐶l

∗𝑙𝑙𝑙𝑙�
0.98∗�1−𝐶𝐶𝐾𝐾1l�
0.02∗𝐶𝐶𝐾𝐾1l

�∗�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms−𝐶𝐶𝐶𝐶l�

1+𝐶𝐶𝐶𝐶1l∗(

⎝

⎜
⎛
𝑒𝑒

1
𝑇𝑇0l−𝐶𝐶𝐶𝐶l

∗𝑙𝑙𝑙𝑙�
0.98∗�1−𝐶𝐶𝐾𝐾1l�
0.02∗𝐶𝐶𝐾𝐾1l

�∗�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms−𝐶𝐶𝐶𝐶l�

⎠

⎟
⎞
−1)
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(23) 𝐾𝐾𝐾𝐾yms =
𝐶𝐶𝐶𝐶4l∗𝑒𝑒

1
𝑇𝑇𝑇𝑇l−𝑇𝑇𝑇𝑇l

∗𝑙𝑙𝑙𝑙�
0.98∗�1−𝐶𝐶𝐾𝐾4l�
0.02∗𝐶𝐶𝐾𝐾4l

�∗�𝑇𝑇𝑇𝑇l−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms�

1+𝐶𝐶𝐶𝐶4l∗(

⎝

⎜
⎛
𝑒𝑒

1
𝑇𝑇𝑇𝑇l−𝑇𝑇𝑇𝑇l

∗𝑙𝑙𝑙𝑙�
0.98∗�1−𝐶𝐶𝐾𝐾4l�
0.02∗𝐶𝐶𝐾𝐾4l

�∗�𝑇𝑇𝑇𝑇l−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms�

⎠

⎟
⎞
−1)

 

Forage fish, such as delta smelt, typically show a decrease in foraging rates as turbidity declines 
and the perceived risk of being detected by a predator increases (Pangle et al. 2012). The risk of 
predation and changes in delta smelt behavior in clear water were documented by Ferrari et al. 
(2014), though rates of predation may have been biased high because smelt could not effectively 
evade predators in laboratory conditions. The relationship between delta smelt foraging rate and 
turbidity reported by Hasenbein et al. (2016) was approximated using a simple logistic model (Fig. 
2), that increased from the lowest turbidities evaluated (5 NTU; 84 cm Secchi depth) to the 
turbidities associated with maximum foraging rate (25-80 NTU; 28-13 cm Secchi depth). Since 
turbidities greater than 80 NTU were rarely observed during the time period explored, foraging 
limitation at high turbidity was not modeled, i.e., using a dome-shaped double-logistic model. As 
turbidity declined, the effect of turbidity (KTyms; Eq. 14) was assumed to reach some asymptotic 
minimum 𝛼𝛼𝐹𝐹𝐿𝐿.  

(24) 𝐾𝐾𝑇𝑇yms = 𝛼𝛼𝐹𝐹𝐿𝐿 + (1 − 𝛼𝛼𝐹𝐹𝐿𝐿) �1 + 𝑇𝑇0.1∗�𝑇𝑇𝑚𝑚𝑚𝑚𝑏𝑏yms−56.2��⁄  

Mortality. The survival probability of simulated juvenile to adult delta smelt 𝐷𝐷JAiym is the function 
of two competing sources of mortality, entrainment mortality F and natural mortality M (Fig. 8)  

(25) 𝐷𝐷JAiym = 𝑇𝑇−�𝐹𝐹iym+𝑀𝑀iym�.  

F represents the effect of being drawn into the South Delta through the action of pumping, where 
fish may be subject to direct export from the system, predation in the South Delta, or otherwise 
isolation from the remainder of the population. M represents all other sources of mortality. Natural 
mortality in IBMR predominantly represents predation, as the effects of food and starvation are 
accounted with bioenergetics.  

The survival state of each individual 𝑧𝑧iym (1 or 0) is randomly assigned to each individual based 
on draws from a Bernoulli distribution with probability 𝐷𝐷iym 

(26) 𝑧𝑧iym~Bernoulli �𝐷𝐷JAiym�. 

Simulated fish may also die due to starvation, if their weight declines more than 15% during a one-
month period.  

F is applied to fish located in the South Delta stratum during December–June. A ‘ramp’ model of 
F as a function of OMR is used to calculate the level of F to apply (Fig. 8). If OMR is less than or 
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equal to the minimum threshold (-5,000 ft3/s for larger fish and -3,500 ft3/s for smaller fish), all 
fish occupying the South Delta experience entrainment mortality; at the simulated population level, 
the entrainment loss equals that estimated by the US Fish and Wildlife Service’s Life Cycle Model 
(Smith et al. 2021). F declines linearly to zero from the LCM-based level, as OMR increases to 0 
ft3/s. Fish located outside of the South Delta are assigned F = 0; all fish are assigned F = 0 during 
July–November.  

Rose et al. (2013b) defined a length-based M model 𝑂𝑂iym = −0.034 + 0.165 ∗ 𝐿𝐿iym−0.322. The same 
length-based model of M is assumed in IBMR v3, but it is scaled in proportion to the Secchi-Cmax 
relationship (𝐾𝐾𝑇𝑇iym; Eq. 24). It is assumed that the length-based model represented a maximum 
potential rate of M, and that delta smelt experience lower predation risk as turbidity increases. As 
turbidity increases and predation risk declines, delta smelt respond by increasing foraging rate (the 
Secchi-Cmax relationship). In other words, this approach assumes that delta smelt limit foraging in 
proportion to the predation risk they perceive as turbidity varies. Although the experiments of 
Ferrari et al. (2014) demonstrated a mechanism relating lower turbidity to higher predation of delta 
smelt, these results may have been biased by the confined, artificial conditions of the experiment. 
Wild delta smelt are expected to experience less predation mortality compared to what Ferrari et 
al. (2014) documented in a lab setting. Under poor foraging conditions, represented by low 
turbidity, foraging is minimized (𝐾𝐾𝑇𝑇iym = 𝛼𝛼𝐹𝐹𝐿𝐿) and natural mortality is maximized at the rate 
predicted by the length-based M model. Under ideal conditions of higher turbidity, foraging is 
maximized (𝐾𝐾𝐷𝐷iym = 1) and natural mortality is minimized at the α fraction of delta smelt natural 
mortality predicted by the length-based M model.  

(27) 𝑂𝑂iym = �−0.034 + 0.165 ∗ 𝐿𝐿iym−0.322� ∗ �1 − 𝛼𝛼𝐹𝐹𝐿𝐿 + 𝐾𝐾𝑇𝑇iym�. 

Population growth. Annual growth of the simulated delta smelt population is defined by spawner 
abundance (AB), or the number of fish in the simulated population just prior to the beginning of 
the spawning season in February. Annual population growth 𝜆𝜆ABy is calculated 

(28) 𝜆𝜆ABy = 𝐴𝐴𝐴𝐴𝑦𝑦
𝐴𝐴𝐴𝐴𝑦𝑦−1

. 

Model calibration and diagnostics. M and the maximum turbidity penalty on foraging α were 
calibrated so that the simulated delta smelt population reproduced certain qualities of the wild delta 
smelt population. M required calibration to generate the long-term patterns in delta smelt 
abundance observed across fish surveys. 𝜆𝜆ABy were the product of reproductive, survival, and 
individual growth rates. IBMR survival rates (i.e., M) were calibrated to approximate the 
population growth rates observed in the wild population (Polansky et al. 2019). The geometric 
mean of observed population growth rates, calculated from 2000-2014 June abundance estimates 
was 0.8. To calibrate IBMR to observed abundances, 𝑂𝑂iym were iteratively multiplied by a 
constant until the median geometric mean 𝜆𝜆AB among IBMR-simulated June abundance time series 
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was approximately 0.8. Note that June abundances were used in this calibration, in order to 
leverage one of the better observed delta smelt abundance datasets using the 20mm Survey. 

The growth of simulated delta smelt depended on biotic and abiotic constraints on foraging. Biotic 
constraints were described by prey type and availability and the multispecies functional response 
(Eq. 20). Abiotic constraints were described by temperature and turbidity effects on 𝐶𝐶max (Eq. 22-
24), which are only partially informed by experimental results; thus, temperature and turbidity 
effects on 𝐶𝐶max represent a critical uncertainty in IBMR dynamics. In order to assess whether 
IBMR reproduced the expected growth trajectory for delta smelt, simulated mean length at age 
was compared to two reference points: a von Bertalanffy growth model fit to lengths and ages 
observed in the wild population (Smith 2018) and mean lengths of delta smelt observed in February 
fish surveys. The maximum effect of low turbidity on consumption rates α was calibrated to 
observed February lengths by iteratively changing α to minimize the residual (observed lengths – 
IBMR-predicted lengths) sum of squares for years 2002-2014, when the initiation of Spring 
Kodiak Trawl sampling reduced the length-selectivity bias of the observed mean February lengths. 
Prior to 2002, mean observed lengths may have been biased low by the selectivity of the Midwater 
Trawl gear, which appears to decline for larger delta smelt (Mitchell et al. 2019). 

After Rose et al. (2013b), a sensitivity analysis was performed to evaluate which data types IBMR 
dynamics were most sensitive to. Data that drove the simulated dynamics of the delta smelt 
population were Old and Middle River flow, water temperature, Secchi depth, prey density, and 
observed delta smelt spatial distributions. First, the years with the highest and lowest simulated 
January population growth rates were identified. Data in these years formed two alternate sets, 
representing conditions leading to high and low population growth. All years 1995-2014 of the 
IBMR simulation were run, holding each type of model input constant, one at a time, at the high 
or low sets, while allowing other data to vary at the observed values. IBMR sensitivity was 
indicated by the relative change in the geometric mean of 𝜆𝜆ABy. Using the model with all data 
varying at the observed 1995-2014 values as a baseline, greater distance of mean 𝜆𝜆AB from the 
baseline, when holding a particular data type or combination of data types constant indicated 
sensitivity in simulated IBMR dynamics. 

A second set of sensitivity analyses were performed to explore model assumptions about fish 
distributions in the South Delta and the assumption that natural mortality varies as a function of 
Secchi depth. In alternate IBMR configurations, fish distributions in the South Delta were 
estimated from survey data, as for other spatial strata, and the Secchi depth mortality relationship 
(Eq. 26) was eliminated. 
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Results 

A total of 300 1995-2014 delta smelt population time series were simulated in the IBMR, requiring 
approximately 3 hours of run time. Greater efficiency could be achieved using parallel processing. 

Simulated proportional entrainment mortality increased at older life stages, as abundance declined 
(Fig. 9). All fish occupying the South Delta stratum were assumed to die of entrainment mortality 
when OMR was -5,000 cfs or more negative (Fig. 8), and no fish occupying the South Delta were 
assumed to die of entrainment mortality when OMR was greater than 0 cfs. 

During calibration, the IBMR natural mortality model (Eq. 26) was scaled by a factor of 1.262, 
generating a median geometric mean 𝜆𝜆AB, among all simulated June abundance time series of 
0.983 (Fig. 10). Though most observed abundances fell within the 95% interval of simulated 
abundances, modest lack of fit to the Life Cycle Model estimates (Smith et al. 2021) June 
abundance (recruitment) estimates occurred in two time periods. IBMR predicted somewhat higher 
recruitment than the Life Cycle Model during 2000-2005, and IBMR predicted lower recruitment 
than the Life Cycle Model during 2010-2011. Fit to other Life Cycle Model estimates of 
abundances was better than fit to observed June abundances. 

Simulated lengths after one year of growth appeared to reach the lengths predicted by the von 
Bertalanffy growth model (Fig. 11). Although IBMR growth rates in the first four months were 
lower than predicted by the von Bertalanffy growth model, the von Bertalanffy predicted growth 
rates may be positively biased for younger fishes (Haddon 2001). A maximum effect of low 
turbidity on consumption rates α = 0.63 maximized the fit to lengths measured in February (Fig. 
12). 

As indicated by the greatest change in mean 𝜆𝜆AB from the baseline, IBMR was most sensitive to 
the variation in prey density (PD) data and to combinations of PD and Secchi, fish distribution 
(DS), and OMR (Fig. 13). Mean 𝜆𝜆AB of the base model was 0.955, and maximum 𝜆𝜆AB = 2.15 and 
minimum 𝜆𝜆AB = 0.397 were simulated in years 1998 and 2004, respectively. When individual data 
types were fixed at the 1998 or 2004 values, while allowing all other data to vary at the observed 
1995-2014 values, the highest mean 𝜆𝜆AB was simulated using 1998 levels of PD (mean 𝜆𝜆AB = 
1.86), and the lowest mean 𝜆𝜆AB was simulated using 2004 levels of PD (mean 𝜆𝜆AB = 0.511). When 
combinations of two data types were set to the 1998 or 2004 values, the highest mean 𝜆𝜆AB was 
simulated using 1998 levels of PD and DS (mean 𝜆𝜆AB = 2.81) and using 1998 levels of PD and 
OMR (mean 𝜆𝜆AB = 2.093), and the lowest mean 𝜆𝜆AB was simulated using 2004 levels of PD and 
DS (mean 𝜆𝜆AB = 0.289). 

Alternate IBMR configurations, with either an alternate method to estimate South Delta DS or no 
turbidity relationship with natural mortality (Eq. 26) demonstrated similar model sensitivity to PD; 
however, models with South Delta DS estimated from fish surveys were less sensitive to OMR, 
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and models without a turbidity relationship with natural mortality were less sensitive to Secchi 
(Fig. C1-C2). 

 

Recommended applications 

The IBMR is a mechanistic representation of several critical processes of the delta smelt 
population, but it relies on major assumptions that determine exactly how some mechanisms 
operate. At the coarsest scale, the model may be used to characterize long-term annual population 
growth rates, and at a finer spatiotemporal scale, the model may be used to explore how seasonal 
and regional limitations of temperature, prey availability, and turbidity integrate to provide more 
or less favorable conditions for individual delta smelt.  

Chipps and Wahl (2008) discuss the development and uses of bioenergetics models of fish 
populations. They recommend that management applications of bioenergetics models be limited 
by the degree to which model components have been validated. The IBMR was calibrated to 
certain metrics observed in the wild delta smelt population, relative abundance and mean 
individual growth rates, but other components of the model, discussed below, require empirical 
validation in a controlled (hatchery) environment. Given critical uncertainties, the best use of 
the IBMR would be to qualitatively compare among simulated baseline and management 
action scenarios; quantitative applications, such as predicting abundance, would not be an 
appropriate use of the IBMR at the current stage of model development and validation. Comparing 
simulated population growth rates (mean 𝜆𝜆AB) under a baseline scenario, represented by 
environmental, fish distribution, and prey observations in 1995-2014, to a management action 
scenario, represented by some modification to observed conditions, may illustrate long-term 
expected effects of management actions. The sensitivity analyses reported on here represented a 
version of this approach, in which mean 𝜆𝜆AB were evaluated when observed conditions were fixed 
at 1997 or 2005 values.  

Bioenergetics models provide a method to integrate information about the attributes of the abiotic 
and biotic environment with mechanistic models describing the fitness consequence of using that 
habitat space (Rosenfeld et al. 2016). At the smallest spatiotemporal scale, comparisons of 
potential seasonal or monthly growth may help to illustrate regional differences abiotic and biotic 
conditions that lead to regional variation in habitat quality. Focusing on just bioenergetics, and 
avoiding the reproduction, mortality, and movement assumptions of IBMR, regional estimates of 
temperature and turbidity can be used to evaluate habitat suitability in terms of individual growth 
potential. This regional habitat suitability approach can be expanded to include biotic conditions 
if prey availability can be characterized. Comparing regional estimates of potential consumption, 
given measurements of abiotic and biotic conditions, may reveal that some areas provide greater 
productivity than others. The value of this approach is that it allows integration of several 
components of habitat quality into a single index of habitat suitability. 
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Model limitations and potential future improvements 

The model primarily relies on the validity of experimental results to parameterize vital rates, such 
as fecundity and larval survival, and measurements of environmental quantities across the spatial 
domain of the delta smelt population. Future experimental results or the development of new 
datasets may lead to model improvements. 

Though IBMR was not statistically fit to observed abundance data, it was compared to abundance 
estimates from the Delta Smelt Life Cycle Model with Entrainment (Smith et al. 2021), and this 
comparison illustrated certain aspects of model performance. Primarily, lack of fit to some June 
recruitment estimates suggested that IBMR generated greater variation in recruitment than was 
observed. This was related to the findings that IBMR was sensitive to prey density estimates, that 
IBMR-simulated female size in February was greater than observed in some years and less than 
observed in other years, and the finding of Rose et al. (2013b) that DSIBM was sensitive to 
fecundity estimates. Higher prey densities generate larger, more fecund simulated females, 
resulting in higher simulated recruitment in June. Improved quantification of bioenergetics model 
parameters for delta smelt will lead to improved representation of delta smelt growth and 
fecundity. 

Estimation of full life cycle occupancy models would enable model-based simulations of fish 
distributions, which may change under new conditions that represent management actions. The 
IBMR v3 is restricted to observed fish distributions, and this approach ignores incomplete 
detection by the fish surveys. The ability to quantify the observed spatial distributions of delta 
smelt was limited by the low density of the population, which resulted in increasingly zero-inflated 
data near the end of the time series. 2014 was the terminal IBMR year, partially because delta 
smelt were undetected in most spatial strata by 2015. Development of occupancy models could 
also allow the extension of the simulation model to years when adequate survey data were not 
available, prior to 1995 or after spring of 2015. 

Strata volumes, developed using DSM2, were used to expand observed densities to regional 
abundances, which were then used to parameterize the movement model. Total strata volumes may 
not represent delta smelt habitat, with strata having large volumes of deep water being over-
weighted. Volume to four meters has been used in other applications to characterize delta smelt 
habitat (Polansky et al. 2019); however, volume estimates to four meters were not available for 
the strata delineations used in the IBMR. 

Water temperature was estimated from data collected during fish monitoring in the Delta for years 
2010-2014, and DSM2 was used to estimate temperatures in all years prior to 2010. DSM2 should 
be a better representation, because it includes a high level of spatial and temporal replication, 
whereas fish monitoring samples are collected a small number of times per year-month 
combination. Future model improvements should include DSM2 estimates of temperature for the 
entire IBMR time series, through year 2014. 
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The model assumed by Rose et al. (2013a) resulted in declining foraging rate as temperature 
increased above 23°C. Although the bioenergetics component of the model was extremely 
sensitive to the relationship between temperature and maximum foraging rate, or 𝐶𝐶max, the 
relationship has not been quantified empirically. An unpublished pilot study by Eder et al. (2014) 
suggested that delta smelt foraging rates may begin to decline at temperatures as low as 20°C, 
which would result in a greater thermal impact on bioenergetics than assumed in the IBMR. 

The mechanistic representation of the population was limited by the monthly temporal scale. For 
example, temperatures greater than 23°C rarely occurred in the monthly IBMR 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms dataset. 
At the daily or sub-daily scale, however, temperatures greater than 23°C occur more frequently, 
suggesting that extreme temperature effects were not well represented in the IBMR. The ability to 
simulate a daily time step is a major advantage of the DSIBM (Rose et al. 2013a and 2013b; Rose 
et al. 2021). 

Turbidity effects were represented by greater simulated mortality and lower delta smelt 
consumption rates (𝐶𝐶max) in clear water, indexed by Secchi depths greater than 84 cm. 
Experimental results suggest greater effects of turbidity on both mortality (Ferrari et al. 2014) and 
𝐶𝐶max (Baskerville-Bridges et al. 2004; Hasenbein et al. 2016), but we assumed these experimental 
results were biased by hatchery conditions and wild delta smelt would be more effective at 
avoiding predation and foraging in clear water. The maximum effect of turbidity, represented by 
parameter 𝛼𝛼FL, was therefore calibrated in IBMR v3 to approximate the adult lengths observed in 
the wild population. Hasenbein et al. (2016) estimated a 60% reduction in foraging rates at low 
turbidity, and Ferrari et al. (2014) found a 66% lower survival rate at lower turbidities. In IBMR 
𝛼𝛼FL was calibrated to a value of 0.63. While experimental results guided our models of turbidity 
effects on delta smelt, the relationships effectively remain unquantified, representing a critical 
uncertainty in delta smelt bioenergetics models. 

South Delta turbidity effects on the probability of delta smelt entrainment were documented by the 
US Fish and Wildlife Service’s Life Cycle Model (LCM) (Smith et al. 2021). The prevailing 
hypothesis (Grimaldo et al. 2009) is that turbidity induces delta smelt to occupy portions of the 
water column where they become vulnerable to advective flows into the South Delta (OMR) if 
they happen to occupy or move into an area near the Lower San Joaquin River. Although LCM-
based estimates of proportional entrainment were used in IBMR, the OMR and South Delta Secchi 
depth parameters quantified by the LCM could not be applied in IBMR, because the LCM was 
non-spatial and parameters described population-level effects. IBMR, on the other hand, was a 
spatial model requiring a spatially stratified movement model that cannot be derived from LCM 
parameters. IBMR entrainment was therefore modeled as a function of South Delta occupancy and 
OMR, ignoring the effect of South Delta turbidity in causing delta smelt to occupy portions of the 
Delta where entrainment was more likely. Failure to capture the effect of South Delta turbidity 
may be less important in simulating the effects of future management actions, if future conditions 
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are expected to resemble recent years, when entrainment has been lower and turbidity has been 
consistently low in the South Delta, especially during the spring. 

Sensitivity analyses demonstrated that IBMR was sensitive to the abiotic and biotic conditions 
forming the simulated delta smelt foraging arena, prey density, temperature, and turbidity. Better 
measurements of these abiotic and biotic conditions, or better models to recreate past prey, 
temperature, and turbidity fields, will reduce once source of error in IBMR. For example, turbidity 
was indexed by Secchi depth, measured during fish monitoring. Low sample sizes within most 
year-month-strata combinations suggest that monthly measured Secchi depths were not always 
representative of ambient conditions. A method to recreate the past turbidity fields in the Delta, 
that were not consistently measured at the time, would improve one important representation of 
the delta smelt foraging arena. 
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Table 1. Comparison of individual-based life cycle model (LCM) variations for delta smelt. Each 
of the models shares some of the population dynamics functions and the same embedded 
bioenergetics model and parameters. Each has unique features as well, particularly their details of 
how movement, entrainment, and reproduction are modeled. 

Model Version  
(citation) 

Programming 
Language Details 

DSIBM 
(Rose et al. 2013) FORTRAN90 

Full LCM on daily time step simulates 11 
overlapping generations in 11 spatial strata; vital 
rate outcomes are predominantly mechanistic or 
calibrated; fish movement is the emergent 
interaction of behavior rules and hydrodynamics. 
 

IBMR v1  
(Smith 2018) R 

Partial LCM (no reproduction) on monthly time step 
simulates 11 non-overlapping generations in 11 
spatial strata; vital rate outcomes are mechanistic but 
uncalibrated; fish movement is based on spatial 
distributions observed in historical catch data. 
 

IBMR v2  
(Peterson et al. 2019) R 

Full LCM on monthly time step simulates 20 non-
overlapping generations in 12 spatial strata; vital 
rate outcomes are mechanistic and calibrated; fish 
movement is based on occupancy modeling of 
historical catch data. 
 

DSIBM v2  
(Rose et al. 2021) FORTRAN90 

Full LCM on daily time step simulates 21-82 
overlapping generations in 12 spatial strata; vital 
rate outcomes are predominantly mechanistic or 
calibrated; fish movement is the emergent 
interaction of behavior rules and hydrodynamics. 
 

IBMR v3  
(Smith 2021; this 
document) 

R 

Full LCM on monthly time step simulates 20 non-
overlapping generations in 12 spatial strata; vital 
rate outcomes are mechanistic and calibrated to 
entrainment mortality, abundance, and growth rates 
observed in wild delta smelt; fish movement is based 
on spatial distributions observed in historical catch 
data; updated with recently developed life history 
parameters. 
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Table 2. All indices, data, and simulated parameters used to denote IBMR. 

 
Index Description Values 
y year y = 1995, 1996, …2014 
m month m = 2, 3, …12, 1 
s spatial strata s = 1, 2, …12 
p prey type p = 1, 2, …12 
i individual i = 1, 2, … 
Data Description  
𝑃𝑃𝑃𝑃ymsp prey density 
𝑂𝑂𝑂𝑂𝑂𝑂ym Old and Middle River flow 
𝑃𝑃𝐷𝐷yms observed delta smelt spatial distribution 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms water temperature 
𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms Secchi depth 
𝑂𝑂ss′ matrix of movement rules between strata s and s’ 
Simulated variables Description  
𝐿𝐿iym fork length 
𝑊𝑊iym weight 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇iym maturity status 
𝑓𝑓𝑇𝑇𝑇𝑇𝑚𝑚𝑓𝑓𝑇𝑇i sex 
𝑛𝑛ADyms abundance of adults 
𝑛𝑛Eggyms number of eggs produced 
𝐷𝐷LRVym survival of eggs to the larval life stage 
𝑃𝑃Hatchs  probability of egg hatching 
𝐷𝐷YSyms  survival of yolk-sac larvae 
𝐿𝐿LRVi  larval length at first feeding 
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚iym stratum occupied by individual i 
Ciym realized consumption rate 
Riym respiration 
Fiym egestion 
Uiym excretion 
SDAiym activity 
Spiym spawning loss 
Cmax maximum potential consumption 
𝐷𝐷JAiym survival of juveniles through adults 
𝐹𝐹iym instantaneous rate of entrainment mortality 
𝑂𝑂iym instantaneous rate of natural mortality 
𝑧𝑧iym survival status 
Fmax maximum potential rate of entrainment mortality 
𝑧𝑧iym survival status 
𝑃𝑃yms number of simulated fish per m3 (density) 
𝜆𝜆ABy population growth rate 
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Figure 1. Map of the Sacramento-San Joaquin Delta, showing the spatial strata used to model delta 
smelt spatial distributions. This map was reproduced from Rose et al. (2013a) and Peterson et al. 
(2019). 
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Figure 2. Histograms of physical Delta variables driving the Delta Smelt Individual-Based Life 
Cycls Model in R (IBMR). Old and Middle River flows for the critical December through June 
period and water temperatures for July through September are shown, because these variables were 
expected to be seasonally limiting. Secchi depths for all year-month-stratum combinations are 
shown. 
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Figure 3. Diagram of the Delta Smelt Individual-Based Life Cycle Model in R (IBMR) and data.  
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Figure 4. Models of the probability of maturation and fecundity at length. 
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Figure 5. Model of egg to larval survival as a function of water temperature (top panel), based on 
Bennett (2005) (Bennett’s Fig. 10). The bottom three panels show observed Delta temperatures in 
all spatial strata during spawning months of 1995-2014. 
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Figure 6. Models of maximum consumption (Cmax) and respiration assumed by Rose et al. (2013a) 
(top row). In the bottom row are shown models of the temperature effect on Cmax (𝑲𝑲𝑲𝑲𝐢𝐢𝐢𝐢𝐢𝐢 and 
𝑲𝑲𝑲𝑲𝐢𝐢𝐢𝐢𝐢𝐢; Eq. 12-13), and the model of the effect of turbidity on Cmax (𝑲𝑲𝑲𝑲𝐢𝐢𝐢𝐢𝐢𝐢; Eq. 14), suggested by 
data published by Hasenbein et al (2016). 
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Figure 7. Table from Rose et al. (2013a) showing fixed parameter values used to simulate Delta 
Smelt feeding and growth. 

 

 

Figure 8. Models of instantaneous rates of natural (~ predation) and entrainment mortality. 
Entrainment mortality risk was added to natural mortality risk if fish occupied the South Delta 
stratum. 
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Figure 9. Median entrainment mortality (red lines), among all simulated populations (gray lines) 
during January through May of each year. Old and Middle River flow experienced by the simulated 
delta smelt population is shown by the black lines.  
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Figure 10. Median simulated abundance (red lines), among two simulated population time series 
(gray lines), and abundances estimated the Delta Smelt Life cycle Model with Entrainment (black 
lines) (Smith et al. 2021).  
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Figure 11. Simulated monthly time series of mean delta smelt length at age, for all years 1995-
2015 (black lines) and von Bertalanffy growth model predicted length at age (red line), assuming 
a mean length of 16 mm FL in May. The von Bertalanffy model was fit to lengths and ages 
observed in the wild population. 
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Figure 12. February fork lengths simulated by IBMR and observed for wild delta smelt in the 
CDFW Spring Kodiak (2002-2014), Midwater (1995-2001) Trawl Surveys, and in salvage 
operations. 
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Figure 13. Results of sensitivity analysis. Bars show the geometric mean of population growth 
rates 𝝀𝝀𝐀𝐀𝐀𝐀, when one or two data types were fixed at the values measured in high growth year 1998 
(dark bars) or low growth year 2004 (light bars). Data types were prey density, temperature 
(Temp.), Secchi depth, observed delta smelt spatial distribution (Fish dist.), and Old and Middle 
River flow (OMR). Horizontal reference lines indicate the mean 𝝀𝝀𝐀𝐀𝐀𝐀 when all data was allowed to 
vary at the values measured in 1995-2014 (solid line) and the maximum and minimum 𝝀𝝀𝐀𝐀𝐀𝐀 
simulated in 1998 and 2004 when all data was allowed to vary (dotted lines).  



 
 

34 
 

Appendix A 

Methods for preparing zooplankton data for model input 

Wim Kimmerer and Kenny Rose 
27 December 2019 

The methods used to populate the previous version of the model with inputs of zooplankton food 
for delta smelt (Appendix A in Rose et al. 2013a) have been altered in various ways to 
accommodate the objectives and design of this project (Table 1). In the previous version, 
zooplankton in six taxonomic groups were used to represent food of delta smelt.  Data on 
abundance (number m-3) were obtained from the Interagency Ecological Program zooplankton 
monitoring database and the CDFW 20-mm survey.  The zooplankton program has collected 
zooplankton abundance data monthly at 16–22 stations during the period represented by the model 
of 1995–2005. The 20-mm survey has sampled at 49–52 stations each year, generally during 
March or April to July. These were used with estimates of carbon mass per individual to obtain 
estimates of biomass (mgC m-3) for each taxon (species or higher taxonomic level) and major life 
stage. Data for each taxon, spatial box, and sampling date were increased by a small number (to 
allow for zeros), log-transformed, and averaged. Then data were interpolated to each date in the 
model run by the use of a moving window of 45 days on each side of the date and averaging all 
values within that window for the taxon and box. A similar process was used to determine standard 
deviations. 

Our expansion of the spatial and temporal frame of the model, together with new information about 
delta smelt and their habitat, led us to reconsider the sources of data and the method of converting 
the available data to model input.  

Objective: to extend the time frame of the zooplankton data to include water years 1991 through 
2011, incorporate all available zooplankton data, expand the zooplankton groups, improve the 
method of assigning values to boxes, and revise the parameters for prey consumption as a step in 
the calibration process. 

Overview: Data on zooplankton abundance were obtained from all available data sets from 
ongoing monitoring, and converted to biomass using previously determined carbon masses per 
individual by species and life stage (Fig. 1). Taxa were assigned to one of 12 taxonomic and life 
stage prey groups (“taxa”), and stations were assigned to spatial boxes in the IBM. Biomass data 
were converted to matrices of proportion zero catch and log mean of non-zero data, for each day 
of the simulation, spatial box, and taxon for input to the IBM. Then the parameters of the functional 
response of the four major delta smelt life stages were determined iteratively to  give reasonable 
proportions of prey taxa consumed and gave a mean overall consumption rate of 75% of maximum 
during the calibration period (Fig. 2). These parameters were also used as input to the IBM. 

Data sources:   Zooplankton data are available from four monitoring programs (Tables 1, 2).  The 
three fish-monitoring programs take zooplankton samples mainly to provide information for 
studies of fish diets. The durations, seasons, and stations differ among these programs, and in 
particular the spatial extent of these programs differs widely. Sample collection and processing is 
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more consistent among the programs, with a slightly larger mesh size used in the three fish 
programs, and some slight differences in sample processing and levels of species identification. In 
the zooplankton monitoring program an additional pump sample is taken to collect the smaller 
fraction (45–154 µm), which is the only suitable source of data for two of the prey taxa, copepod 
nauplii and Limnoithona spp. 

Taxon codes in the three fish programs are based on those in the longer-running zooplankton 
program, so for most taxa there is no ambiguity.  However, the level of identification differs 
somewhat among programs and has changed through time in all programs, presenting a challenge 
for finding a common description of the zooplankton assemblage. Adult copepods are usually (not 
always) identified to species, while juveniles are usually identified to genus; for most genera there 
is only one abundant species in the model domain.  

Data processing:   Processing the data required two principal steps: assembling the data sets and 
reconciling differences in identification. The data are available from CDFW through an FTP site 
(accessible through http://wdl.water.ca.gov/iep/products/data.cfm).  The zooplankton data are 
provided as Excel files for each of the sampling gears. The fish data and associated zooplankton 
data are in Microsoft Access files.  For analysis I exported all tables and imported them into R, 
then saved the data as lists of data tables in .Rdata files and wrote query functions to extract the 
data of interest from these lists. This resulted in smaller files and easier queries than available in 
Access. Data from the summer townet and fall midwater trawl surveys have identical formats, so 
these were combined. 

We reconciled taxon names among sampling programs by merging the taxon lists from all 
programs and then examining the resulting table for taxa that were missing from one or two of the 
three data sets.  These were adjusted as follows: 1) If one name was used for different taxa among 
data sets, the name was changed in one or two data sets to match the other(s); 2) If the taxon was 
either too large (e.g., mysids) or too small (e.g., rotifers) to be collected quantitatively in the net 
samples, the taxon was eliminated; or 3) If the taxon was described at different levels of resolution 
in different data sets, the coarser level of resolution was used.  

Small forms such as copepod nauplii and small copepods (e.g., Limnoithona sp.)  are collected int 
the zooplankton program using a pump sampler. Although these are also reported by the fish-
monitoring programs, the nets used do not collect them quantitatively so data for these taxa were 
taken only from the pump data taken by the zooplankton program. Data for large and small 
zooplankton were processed separately because of the large difference in sampling density. 

Stations:  The association between fixed stations and boxes was determined previously for Rose 
et al. (2013a), except that we removed the Cache Slough complex from Box 1 (upper Sacramento) 
and placed it in new Box 12. Stations were assigned to boxes they were in and also to nearby boxes 
to increase the number of data points for each sampling day (see Appendix in Rose et al. 2013a).   

Starting in 1994 the zooplankton monitoring program has also visited movable stations, one at 
salinity ~1 and the other at  salinity ~3.2.  When these salinities were found in the Delta, samples 
were taken in the Sacramento River, except that beginning in  2014 samples were also taken at 
these salinities in the San Joaquin River. One or more of these stations are omitted if the salinity 

http://wdl.water.ca.gov/iep/products/data.cfm
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at a fixed station (the substitute) is close to the target value.  Beginning in 2004 the coordinates of 
the movable stations and any substitute station were listed in a series of spreadsheets. We 
eliminated movable stations that had a substitute (to avoid double-counting data) and used these 
coordinates to assign each movable station to the nearest box. 

For data before 2004 we compared the salinity recorded for the movable stations with that recorded 
at fixed stations in the same survey, and eliminated four data points from movable stations where 
the salinity matched .   Then for each survey we constructed a relationship of salinity vs. distance 
up the axis of the estuary (km) and interpolated to convert salinity recorded at the movable stations 
to distance. This was then used to assign the movable stations to boxes. In four cases salinity was 
not recorded at any station, and these four values were dropped. 
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Selecting taxonomic groups 

Equation 10 in Rose et al. (2013a) specifies the realized ingestion rate of a given prey group by an individual 
fish, rearranged here: 
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where Cj' is the ratio of ingestion rate to the maximum Cmax scaled to the weight of the fish W; that is, Cj' is 
a measure of the “success” of the fish because the growth rate of the fish will be maximized when Cj' is 1. 
Zj is biomass of taxon j, Vj is vulnerability, a switch (0 or 1) to turn feeding on the species group on or off, 
and Kj is the half-saturation constant. Subscripts j refer to the individual prey group, which may be one or 
more life stages, species, or other groupings, and k refers to all prey groups. With only one prey group Eqn. 
2 reduces to the familiar Holling Type II functional response, a rectangular hyperbola, in which the 
maximum is 1 and the half-saturation constant is Kj.  

 If two or more species groups have the same V and K parameters, total mass consumption by a fish does 
not change if the groups are entered individually or combined. Therefore species groups need be entered 
separately only if their parameters differ for any life stage of delta smelt.  Other groups may also be entered 
separately for convenience during calibration or when comparing among time periods (above), boxes, or 
sampling programs.  

The criteria for selecting taxonomic groups and either lumping them or keeping them separate are: 

1. Relatively abundant during at least part of the model period. 
2. Abundant in all sampling programs or in one or more boxes. 
3. Known or likely difference in feeding parameters for any delta smelt life stage 
4. Different spatial and temporal distributions from other taxa that could affect delta smelt 
5. No more than 12 prey groups  

 
Based on these criteria we selected 12 zooplankton groups (Table 3). Copepods include adults of two 
species, adults and juveniles of two species combined (Limnoithona spp.), juveniles of three species 
(Pseudodiaptomus spp.), other calanoid adults and juveniles, other cyclopoids, and copepod nauplii 
(larvae). Additional taxa are Daphnia spp. cladocera, other cladocera, and other taxa. 

 
 
Developing master zooplankton data set 
 
The sampling programs report abundance (number m-3) based on counts of subsamples. I converted these 
to biomass using carbon mass measured on several adult copepods and other taxa (e.g., Kimmerer 2006, 
Gould and Kimmerer 2010, Kimmerer et al. 2017).  Copepodites (juvenile copepods) were assumed to have 
about 25% of the carbon mass of adults based on their median life stage (copepodite 3) and the ratios of 
copepodite to adult masses for several species discussed in the above references. Masses for several other 
taxa were estimated from their size using literature values. 
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Large zooplankton were collected with 154–160 µm mesh nets towed obliquely through the water column.  
I used the combined data from all zooplankton monitoring studies.  The first steps were to remove taxa that 
were not reported in the EMP zooplankton database and those with a mean biomass among all samples less 
than 0.05 mgC m-3. Then I examined the biomass of each taxon in the three databases, as well as biomass 
in the low-salinity zone and the Cache Slough complex.  There was general agreement among the databases 
and locations for most taxa.  

Biomass data were natural-log-transformed with zeros in the original data flagged and replaced with a value 
of -5 which is below the minimum non-zero value.  Data for each box, taxon, and sampling date were placed 
in two arrays, the first containing the log-transformed data excluding zeros (or -5 if all were zero). The  
second array contained a value of 1 for each zero value in the raw data.  Then data in each array were 
averaged across all samples within a box, taxon, and date, though not all dates had complete samples. In 
addition box 12 was sampled only beginning in 1995, and then only in the southern portion of the box and 
during spring. In 2005 additional sampling began in summer–fall. 

To fill out the data for Box 12 I first examined the data for correlations among boxes.  Biomass in boxes 2-
5 had strong relationships with that in Box 12, depending on the taxon. We therefore calculated models in 
which Box 12 biomass was modeled as a linear combination of data from Boxes 2-5.  These models were 
used to predict the mean of the log-transformed non-zero values for Box 12 when data were missing. The 
proportion of zeros could not be modeled this way because much of the available data in Box 12 comprised 
only a single sample, but all the taxa had strong seasonal patterns of presence/absence. Therefore for each 
taxon we modeled the proportion of zeros as a smoothed function of julian day with a binomial error 
distribution (function gam in R package mgcv) and used that to predict the proportions of zeros for each 
taxon. 

The next step was to extend the data for each sampling event in each box into each day of the model period. 
As before (Rose et al. 2013a) we applied a moving window of ± 45 d around each date, and calculated 
means of all non-missing data for a given box and taxon within that window. Because sampling ceased 
during winter of 1989–1993, gaps in the data were too wide to be filled by the moving window, so I 
interpolated the data linearly across the gaps. Then the data were exported as individual files for each taxon, 
each of which contained the year, julian day, and for each box either the mean log biomass or the proportion 
of zeros. The data are then used in the IBM by taking antilogs, then sampling from a binomial distribution 
using the proportion of zeros to get the probability of getting a zero; if a uniform (0,1) random number 
exceeds this probability the result is set to zero. 

Small zooplankton (collected with a pump, EMP only): The pump sample is filtered through a 154 µm 
mesh before it is concentrated at 45 µm for counting, so the values (m-3) calculated from counts of the net 
and the pump samples are considered additive.  The pump collects mostly rotifers, nauplii, and small 
copepods such as Limnoithona spp. Rotifers have been uncommon in the estuary since the late 1980s, and 
have not been reported as common in delta smelt. Copepod nauplii have not been consistently identified to 
genus or species, so they formed a discrete group, and Limnoithona another one from the small zooplankton.  
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Data for small zooplankton were analyzed as above, except that data were available for fewer dates, so a 
60-day window was used for interpolation. Also no monitoring data for small zooplankton have been 
gathered in the Cache Slough complex, so the means of Boxes 4 and 5 were used to populate Box 12. 
 
Feeding rate parameters and outcomes 

Values of preyK and preyV (Eqn. 1, Fig. 2) were determined iteratively to achieve three objectives: 1) Set 
the mean proportion of maximum feeding among all samples in the calibration period (WY 1991-2001) at 
about 75%; 2) Prevent fish from eating prey they are not found to eat at their life stage, probably because 
the prey are too large or too small; and 3) Have the model fish eat prey in approximate proportion to the 
available data on food consumption. This was done in R by box and sampling date; because I did not weight 
boxes by smelt abundance this method does not constitute a calibration of food consumption within the 
IBM but is meant to provide a starting point for that calibration. 

A data set of prey availability was constructed by selecting each sampling event during the calibration 
period (water years 1991–2001) when both large and small zooplankton were collected (i.e., the IEP-EMP 
sampling events) and calculating the biomass of each prey type from each event in each box. These excluded 
Box 12 because no small-zooplankton samples have been taken there, and that region has not been sampled 
for most of the period of record. The data for each sample date, box, and taxon included the mean natural 
log of biomass (zeros excluded) and the proportion of zeros. Antilogs of the means were enhanced by half 
of the variance (0.842/2) to account for the skewness in the lognormal distribution. Then the antilog values 
were multiplied by the proportion of zeros in the raw data. The values resulting from this calculation were 
used to calculate feeding by each life stage for months when these life stages were abundant in the model: 
March–May (larvae), April–July (post-larvae), July–December (juveniles), and January–March (adults). 

First the preyV values were set to limit the range of prey for each life stage. We assumed that larvae could 
not feed successfully on adult calanoid copepods or any cladocerans (Nobriga 2002), that post-larvae could 
consume all prey except the large cladoceran Daphnia, and juveniles could consume all prey except 
copepod nauplii (Nobriga 2002). We assumed that adults also would not eat nauplii, and would rarely detect 
the small, cryptic cyclopoid copepod Limnoithona spp., which in any case is not very abundant before 
March when abundance of adult smelt declines. 

Then the preyK values were adjusted to make the proportions of each taxon in the diets reflect the 
proportions shown in the literature on delta smelt diets by life stage (Feyrer et al. 1993, Lott 1998, Nobriga 
2002, Baxter et al. 2010, and Slater and Baxter 2014). Most of these data are aggregated across dates and 
locations, and some are for gut contents only and corresponding plankton counts are not reported. Therefore 
comparisons of model output to information in these reports were qualitative, and done by life stage within 
their season of abundance since both the life stages and the composition of the ambient zooplankton have 
a strong seasonal pattern.  

Initial guesses at the preyK values were based on the calibration of Rose et al. (2013a), expanded to include 
the additional taxa. I adjusted these iteratively by changing values by small amounts, then comparing 
proportional consumption with literature reports. Then the preyK values with non-zero preyV values for 
each stage (i.e, the prey that could be consumed by the stage) were adjusted up or down proportionally until 
the mean value of the proportion of maximum consumption (Cj' in Eqn. 1) was close to 0.75. These preyK 
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values (Table 4) were then used in a similar analysis for the validation period, and as initial input to the 
IBM. 

The realized consumption rates for the calibration period were close to the target but with wide ranges, 
especially for the younger stages (Table 5, Fig. 3). The statistics changed only slightly when the 
zooplankton data from the validation period was used (Table 5). Differences among boxes are apparent, 
likely a result of spatial patterns in abundance of zooplankton taxa with low preyK values; for example, 
values for larvae and postlarvae in Box 1 (Sacramento River) were generally lower than those in other 
boxes, reflecting dilution of zooplankton during the low-flow spring and early summer.  Values for 
juveniles were generally higher in boxes 1–5 than in boxes 7-11, reflecting low abundance of adult and 
juvenile P. forbesi (see below).  

To examine feeding by prey type with the selected values of preyK (Eqn. 1) I took 50 random samples from 
data for each life stage, sorted the samples to make adjacent samples most similar in relative prey 
composition,  and plotted the proportions by biomass of each taxon in the available prey and in the 
calculated daily consumption by taxon from Eqn. 1. 

Figures 4–7 show the proportions of biomass available and proportions eaten by taxon for each life stage 
of delta smelt, including only prey taxa with preyV=1 for a given life stage.  The food available to larvae 
(Fig. 4) was dominated by copepod nauplii and juvenile copepods. The larvae consumed mainly juvenile 
copepods, primarily P. forbesi and other calanoids.  Post-larvae are able to consume a larger array of prey 
types than larvae (Fig.  5); the more diverse prey field contained high proportions of copepod nauplii, 
juvenile and adult copepods, and some cladocerans, but the fish ate mostly juvenile copepods. The juvenile 
prey field was also diverse, partly because of seasonal decreases in abundance of warm-water species such 
as P. forbesi (Fig. 7). Consumption was similarly diverse though it emphasized adult copepods when they 
were available, especially P. forbesi, and total consumption was positively related to abundance of P. 
forbesi. The diets included some cladocerans and Limnoithona when there was little else to eat, which is 
consistent with gut-content data (Slater and Baxter 2014). The food availability in late winter-early spring 
when adults were present was much richer in cladocerans such as Daphnia, substantial proportions of  
cyclopoid copepods, and some calanoids. Adults (Fig. 7) consumed mainly adult calanoids and Daphnia 
spp., feeding at the larger end of the prey spectrum. 

Feeding during the validation period resulted in similar overall consumption rates  (Figs. 8–11) but prey 
availability and therefore feeding during the validation period was rather different because of shifts in the 
prey abundance patterns. For postlarvae adult copepods made up a lower proportion of the available prey, 
and nauplii a higher proportion, than during the calibration period, but proportions of consumption of the 
prey were not much different between the two periods because parameters for postlarvae were set so they 
did not eat many nauplii.  The prey available to juveniles was very different during validation than 
calibration, with a much higher proportion of Limnoithona and Acartiella at the expense of P. forbesi.  
These differences are reflected in the proportions consumed. For adults the principal difference in the prey 
field was a lower proportion of cyclopoids and a higher proportion of calanoids, so that consumption was 
about split between calanoids and cladocerans. 

The longer-term feeding picture (Figs. 12, 13) shows high variability in space and time. In the Delta the 
Sacramento box often had the lowest feeding rate, which is consistent with the low zooplankton abundance 
owing to dilution by river flow. The Delta does not show a consistent downward trend across life stages, 
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and for juveniles, feeding was more consistent and usually somewhat higher after the early 1990s than 
before. In Suisun Bay there were several years of very low feeding around 1990, and after that a consistently 
lower feeding rate for juveniles than before that period. Suisun Marsh (Box 9) was somewhat anomalous 
in its pattern.  
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Table 1. Changes made to algorithm for assigning zooplankton abundance to boxes. 

Feature Rose et al. 2013a Changes in current version 
Time frame 1995–2005 Water years 1991–2001 for calibration, 2001–2011 for 

validation 
Number of taxa 6 10 large 2 small 
Method for zero catch e-8 for large zoops, e-4 small so data 

could be log transformed. 
Zero-inflated method with two parameters per box & day: 
mean of ln(biomass) for non-zero values, and proportion 
zeros. 

Standard deviation Calculated and expanded as for mean Constant value of 0.84 based on data 
Number of boxes 11 12 with CSC split off from Box 1 (Sac) 
Stations included 41 from 20mm, 29 EMP 51 from 20mm, 45 TNS, 41 MWT,  

30 EMP + ~30 salinity-based stations/year starting 1994 
EMP sampling  Monthly sampling Before 1989 EMP sampled twice monthly but not in winter. 

1990-1993 throughout year; from 1994 monthly at ~40% of 
stations, and added 2–4 salinity-based stations. 

20mm sampling Consistent Box 12 1 station 1995, up to 12 by 2011 
TNS sampling NA Started in 2005 
MWT sampling NA Started in 2005 
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Table 2.  Characteristics of data sources for zooplankton abundance. All programs continue, but years 
listed include all for which data were available in May 2017.  

Source Years Months Stations Net mesh Small zoops 
Zooplankton monitoring 1972–2017 Jan–Dec* 37 ( 6–60) 154 µm 45–154 µm  
20mm survey 1995–2016 Mar–Aug 41 ( 5–52) 160 um — 
Summer townet survey 2005–2015 Jun–Aug 32 ( 9–32) 160 um — 
Fall midwater trawl survey 2005–2015 Sep–Dec 32 (23–40) 160 um — 

* Mar–Nov in 1972–1976 and 1984–1994   
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Table 3.  Zooplankton taxonomic groups and links to individual taxa.  The size class is based on either 
sampling with a net (Large) or pump (Small).  Species code is that used in the EMP zooplankton 
monitoring program.  Taxon names are the species codes unless the group includes >1 code. 

Size 
class 

Species 
code Genus Species Taxon 

name Comments 

Large 

acartela Acartiella sinensis acartela Prominent in diets in late summer (Start 1994) 
daphnia Daphnia spp. daphnia Very abundant in freshwater 
eurytem Eurytemora affinis eurytem Historically abundant, still common in spring 
pdiapfor Pseudodiaptomus forbesi pdiapfor Most  common prey (Starting 1989) 
pdiapjuv Pseudodiaptomus spp. pdiapjuv Second most abundant zoop group (Starting 1990) 
acartia Acartia spp. othcalad 

Other calanoid adults.  These collectively are 
important prey but no particular species is that 
abundant in delta smelt habitat. 

diaptom Diaptomus spp. othcalad 
osphran Osphranticum labronectum othcalad 
pdiapeu Pseudodiaptomus euryhalinus othcalad 
pdiapmar Pseudodiaptomus marinus othcalad 
sinocal Sinocalanus doerrii othcalad 
tortanus Tortanus sp. othcalad 
othcalad   othcalad 
acarjuv Acartia  othcaljuv 

Other calanoid copepodites - as for other calanoid 
adults. 

asinejuv Acartiella  othcaljuv 
diaptjuv Diaptomus  othcaljuv 
euryjuv Eurytemora affinis othcaljuv 
sinocaljuv Sinocalanus  othcaljuv 
tortjuv Tortanus  othcaljuv 
othcaljuv   othcaljuv 
avernal Acanthocyclops vernalis othcyc 

Cyclopoid copepods (all stages) can be abundant at 
times and occur in delta smelt guts. 

oithdav Oithona davisae othcyc 

oithsim Oithona similis othcyc 

oithspp Oithona spp othcyc 

cycjuv   othcyc 

othcycad   othcyc 

bosmina Bosmina longirostris othclad 

Other cladocera can be abundant at times. ceriodap Ceriodaphnia spp. othclad 
diaphan Diaphanosoma spp. othclad 
othclado   othclad 
harpact   other 

Other taxa to complete the list 

annelid   other 
barnnaup   other 
chironomid   other 
crabzoea   other 
cumac   other 
ostrac   other 

Small limno Limnoithona spp. limno Extremely abundant, sometimes eaten (Start 1994) 
allcopnaup   copnaup Copepod nauplii eaten by larvae 
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Table 4.  Calibrated values of  preyK, left blank where preyV is zero. At any prey concentration, higher 
levels of preyK correspond to lower feeding rates. These values were used in all subsequent analyses 

 

Taxonomic 
group 

  preyK values for all preyV not 0 
 Description Larvae Post-

larvae Juveniles Adults 

acartela  Acartiella sinensis (copepod) adults  75 2 0.15 
eurytem  Eurytemora affinis (copepod) adults  13 1 0.15 
pdiapfor  Pseudodiaptomus forbesi  (copepod) adults  5.2 0.9 1.5 
othcalad  Other calanoid copepod adults  13 2 0.45 
pdiapjuv  Pseudodiaptomus forbesi copepodites 0.3 0.5 3 1.5 
othcaljuv  Other calanoid copepodites 0.3 0.5 5 1.5 
limno  Limnoithona spp. copepods (all stages) 1.8 4.5 10 13.5 
othcyc  Other cyclopoid copepods (all stages) 1.2 2.2 3 1.5 
allcopnaup  Copepod nauplii (all spp.) 5.4 50   
daphnia  Daphnia spp. (cladocerans)  75 3 0.15 
othclad  Other cladocerans  50 10 0.7 
other  All other taxa  24 15 1.5 
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Table 5. Summary statistics for maximum proportional feeding rate (Eqn. 1) using parameters in Table 4. 
Parameters preyK for the calibration period were adjusted to get a mean proportional feeding rate of 
~0.75.  Parameters were then used for the validation period without adjustment. N is total number of 
samples, and all maxima were over 0.97. 

 

 N Mean ± SD Median Minimum 
Calibration period 

Larvae 420 0.75 ± 0.18 0.79 0.23 
Post-larvae 597 0.75 ± 0.18 0.79 0.13 
Juveniles 813 0.75 ± 0.17 0.80 0.20 
Adults 268 0.76 ± 0.13 0.77 0.41 

Validation period 
Larvae 329 0.77 ± 0.17 0.83 0.26 
Post-larvae 439 0.76 ± 0.16 0.79 0.16 
Juveniles 659 0.71 ± 0.18 0.75 0.19 
Adults 329 0.78 ± 0.12 0.79 0.49 
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Figure 1. Flow diagram summarizing the process for preparing zooplankton biomass data for input to the 
IBM. Each text box represents a process, and blue gridded boxes represent matrices or arrays  of data. 
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Figure 2. Flow diagram summarizing the process for determining preyV and preyK values for input to the 
IBM. Shapes as in Fig. 1.  
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Figure 3. Boxplot of the proportion of maximum consumption (Cj' in Eqn. 1) by spatial box by delta smelt 
life stage for the calibration and validation periods.  
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Figure 4. Calibration period. Prey available and feeding by larval delta smelt. Upper panel shows relative 
biomass of prey taxa and lower panel shows relative feeding on each taxon, with the heavy line indicating 
the proportion of maximum consumption (Cj' in Eqn. 1). Data were randomly selected from the total 
available (Table 5) and ordered to keep similar samples close together. Labels on the X axis denote year-
month-Box. Taxon names are identified in Table 3. 
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Figure 5.  As in Fig. 4 for postlarvae. 
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Figure 6.  As in Fig. 4 for juveniles. 
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Figure 7.  As in Fig. 4 for adults. 
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Figure 8.  As in Fig. 4 for larvae in the validation period.  
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Figure 9.  As in Fig. 4 for postlarvae in the validation period.  
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Figure 10.  As in Fig. 4 for juveniles in the validation period.  
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Figure 11.  As in Fig. 4 for adults in the validation period.  
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Figure 12.  Fraction of maximum feeding rate vs. year by life stage for Delta (boxes 1-6) and Suisun Bay 
and Marsh. Values are means by year for the season of abundance of the life stage. 
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Figure 13. Data in Fig. 12 arranged as boxplots for three time periods reflecting major periods of change 
in the estuarine food web. 
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Appendix B 

Missing temperature and Secchi depth data 
 

Introduction 

General linear models were developed to predict missing temperature and turbidity data. The 
objective of these models was prediction, not inference; therefore, covariate effects were not 
selected based any particular mechanistic link (e.g., spatial proximity), and the relative effects 
within each model were not compared. Only explanatory power and model performance was 
considered. 

 

Temperature 

DSM2 monthly mean  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms for years y, 2011-2014, months m, and spatial strata s were 
predicted as a function of season, spatial strata, and monthly mean temperatures measured by fish 
monitoring programs 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� yms, using a general linear model. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms from DSM2 represented 
a water column mean, while 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� yms from monitoring programs represented surface 
measurements. The relationship between  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� yms was expected to vary 
seasonally, with the onset of thermal stratification as water warmed, and the effect of thermal 
stratification was expected to vary spatially, as water depth, tidal influence, and stratification vary 
spatially. Factorial seasonal and strata effects accounted for this spatiotemporal variation in the 
model to predict missing 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms. 

B1. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms =

𝛽𝛽𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇0 + 𝛽𝛽𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇1 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� yms +
∑ 𝛽𝛽𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇2+i ∗ 𝐷𝐷𝑇𝑇𝑚𝑚𝑠𝑠𝐿𝐿𝑛𝑛m
𝑛𝑛.𝑠𝑠𝑒𝑒𝑓𝑓𝑠𝑠𝑠𝑠𝑛𝑛
𝑖𝑖=1 +

∑ 𝛽𝛽𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇2+𝑙𝑙.𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙+j ∗ 𝐷𝐷𝑚𝑚.𝑔𝑔𝑚𝑚𝐿𝐿𝑚𝑚𝑇𝑇𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇s
𝑛𝑛.𝑠𝑠𝑚𝑚.𝑔𝑔𝑚𝑚𝑠𝑠𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑗𝑗=1

 

𝛽𝛽𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇 represented coefficients of the general linear model, the quantity 𝛽𝛽𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇0 +
∑ 𝛽𝛽𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇2+i ∗ 𝐷𝐷𝑇𝑇𝑚𝑚𝑠𝑠𝐿𝐿𝑛𝑛m
𝑛𝑛.𝑠𝑠𝑒𝑒𝑓𝑓𝑠𝑠𝑠𝑠𝑛𝑛
𝑖𝑖=1 + ∑ 𝛽𝛽𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇2+𝑙𝑙.𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙+j ∗ 𝐷𝐷𝑚𝑚.𝑔𝑔𝑚𝑚𝐿𝐿𝑚𝑚𝑇𝑇𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇s

𝑛𝑛.𝑠𝑠𝑚𝑚.𝑔𝑔𝑚𝑚𝑠𝑠𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑗𝑗=1  represented 

a unique intercept for each s,  and 𝛽𝛽𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇1 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� yms scaled fish monitoring temperatures to 
DSM2 temperatures. Beginning with a full model, having four seasonal effects 𝐷𝐷𝑇𝑇𝑚𝑚𝑠𝑠𝐿𝐿𝑛𝑛m, 
backwards selection was used to combine seasons until n.season groupings remained, with 
coefficient p-values < 0.05. After selecting seasonal effects, the same process was used to 
eliminate strata-specific effects. Beginning with a full model, having 12 strata-specific effects 
𝐷𝐷𝑚𝑚.𝑔𝑔𝑚𝑚𝐿𝐿𝑚𝑚𝑇𝑇s, backwards selection was used to combine strata until 𝑛𝑛. 𝑠𝑠𝑚𝑚.𝑔𝑔𝑚𝑚𝐿𝐿𝑚𝑚𝑇𝑇𝑇𝑇𝑒𝑒𝑓𝑓𝑇𝑇 groupings 
remained, with coefficient p-values < 0.05. 

 

Secchi depth 
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Missing Secchi depth measurements 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms were also predicted from a general linear model. 
Since turbidity stratification was not expected to occur and no secondary measurements of 
𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms were available from independent sources, missing 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms were predicted using the 
remaining measurements in other strata. 

B2. 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ymi = 𝛽𝛽𝑆𝑆𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑖𝑖0 + ∑ 𝛽𝛽𝑆𝑆𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑖𝑖j ∗ 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(𝑆𝑆𝑚𝑚.𝑔𝑔𝑚𝑚𝑠𝑠𝑚𝑚𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ij)
𝑛𝑛.𝑠𝑠𝑚𝑚𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖i
𝑗𝑗=1 , 

for i in the set [Yolo, East Delta, Northeast Suisun]. Backwards model selection was used to 
eliminate strata-specific effects 𝛽𝛽𝑆𝑆𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑖𝑖 until 𝑛𝑛. 𝑠𝑠𝑚𝑚𝑆𝑆𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑖𝑖 strata effects remained, with coefficient 
p-values < 0.05. 

Models B1 and B2 were fit using the glm() function in R (R 2018), and the best models indicated 
by model selection were evaluated graphically using general diagnostic plots, residual, q-q norm, 
standardized residual, and influence, for violations of basic linear model assumptions. Residuals 
were expected to be randomly distributed around zero. qq-norm plots were expected to be 
relatively linear, and the slope of standardized residuals was expected to be zero. 

 

Results 

The best model of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms included separate spring and summer effects, but winter and fall were 
grouped (Table B1). Most strata were grouped, but South Delta, Confluence, and Southwest Suisun 
strata each received unique coefficients, resulting in unique intercepts for these three strata. 
Diagnostics did not indicate severe violations of general linear model assumptions. Model 
residuals appeared to be normally distributed, and no extreme outliers or leverage points were 
detected (Fig. B1). The model explained 95.8% of the variation in the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms data, indicating 
high explanatory power. 

All missing 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms data were from years prior to 2011. Of 240 year-month combinations, 30 
𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(s=Yolo) were missing, 7 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(s=East Delta) were missing, and 1 
𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(s=Northeast Suisun) were missing. The month of August was especially problematic for 
𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(s=Yolo), with zero samples from 1998 to 2010. 

The best model to fill in missing 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms varied by stratum (Table B2). The best model to 
predict 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(s=Yolo) included Sacramento, South Delta, Lower Sacramento, and Lower San 
Joaquin effects. Some 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(s=East Delta) were missing in the same time periods as the missing 
Yolo data, so East Delta data were not used to predict Yolo Secchi depth. The best model to predict 
𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(s=East Delta) included Sacramento, South Delta, Southeast Suisun, and Southwest Suisun 
effects, and the best model to predict 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(s=Northeast Suisun) included Sacramento, Southeast 
Suisun, Northeast Suisun, and Northwest Suisun effects. Diagnostics revealed exactly one extreme 
outlier in the datasets to predict 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms for each stratum, so these outliers were removed prior 
to fitting the final model. After removing outliers, most residuals appeared to be normally 
distributed (Figs. B2-B4), and no high leverage points were detected. Residuals were somewhat 
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higher at the highest predicted values of greater than 175 cm Secchi depth, suggesting that a log-
linear model might fit the data better. Modeled effects on delta smelt did not vary at Secchi depths 
greater than 84 cm, so an improved model of the highest Secchi depths was not expected to change 
the IBMR dynamics. 

The explanatory power of models to predict 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms varied, with East Delta and Northeast 
Suisun models explaining 79.5% and 82.7% of variation, respectively. The best model to predict 
missing 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖ym(s=Yolo) explained only 61.6% of variation. Many of the Yolo observations, or y 
values, were limited to a single replicate sample per month, versus and average of 30 Secchi depth 
samples within other year-month-strata combinations. This limitation may have been a source of 
observation error in the Yolo model. 

 

Discussion 

The models developed here to predict missing 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms and 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms leave much room for 
improvement. 

  
-The best way to improve the estimation of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms data used by IBMR would be to complete 
DSM2 simulations for the entire 1995-2014 time series.  

-Backwards selection using coefficient p-values was used to identify the best 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇yms and 
𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms general linear models, but a comparison of all possible models, using AIC would be a 
superior method. The primary advantage would be increasing the number of strata groupings to 
consider. The set of all possible strata combinations is very large. For example, just consideration 
of all 1- and 2-strata groupings would result in a total of 78 candidate models to consider. 

-Replacing the linear models with a more flexible functional form, such as a generalized additive 
model (GAM), could improve predictions by accounting for non-linear relationships. 

-Some hydrodynamic models of the San Francisco Estuary are capable of simulating turbidity 
fields. Application of these models to estimate the IBMR 𝐷𝐷𝑇𝑇𝑆𝑆𝑆𝑆ℎ𝑖𝑖yms dataset would be especially 
useful for the Yolo spatial strata, which was limited by a low number of within-month (replicate) 
samples and a larger number of unsampled year-month combinations, relative to other strata. 
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Table B1. Results from the best model to predict DSM2 mean water column temperatures from 
fish monitoring measurements of surface temperature 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� .  

Coefficient Estimate p-value 

Intercept 1.370 < 2x10-16 

Spring 0.529 < 2x10-16 

Summer 1.649 < 2x10-16 

Southwest Suisun -0.197 0.002 

South Delta -0.579 < 2x10-16 

Confluence -0.280 1.1x10-5 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�  0.891 < 2x10-16 

% null deviance 
explained 95.8% 
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Table B2. Results from the best models to predict missing Secchi depth data in Yolo, East Delta, 
and Northeast Suisun spatial strata from the remaining data in other strata. 

Coefficient 

Yolo  East Delta  Northeast Suisun 

Estimate p-value  Estimate p-value  Estimate p-value 

Intercept -10.219 0.0013  -7.967 0.0075  -2.303 0.0054 

Sacramento 0.219 2.8x10-9  0.804 < 2x10-16  -0.041 1.57x10-5 

South Delta 0.310 7.6x10-10  0.411 1.4x10-14  -- -- 

East Delta -- --  -- --  -- -- 

Lower Sacramento 0.545 2.1x10-9  -- --  -- -- 

Lower San Joaquin -0.183 0.011  -- --  -- -- 

Confluence -- --  -- --  -- -- 

Southeast Suisun -- --  0.227 0.00011  0.269 < 2x10-16 

Northeast Suisun -- --  -- --  0.309 3.4x10-15 

Suisun Marsh -- --  -- --  -- -- 

Southwest Suisun -- --  0.227 0.041  -- -- 

Northwest Suisun -- --  -- --  0.462 < 2x10-16 
% null deviance 
explained 61.6%  79.5%  82.7% 
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Figure B1. Diagnostic plots for the best model to predict DSM2 mean water column temperatures 
from fish monitoring measurements of surface temperatures. 
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Figure B2. Diagnostic plots for the best model to predict missing Yolo strata Secchi data from 
data in the remaining spatial strata during the same time period. 
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Figure B3. Diagnostic plots for the best model to predict missing East Delta strata Secchi data 
from data in the remaining spatial strata during the same time period. 
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Figure B4. Diagnostic plots for the best model to predict missing Northeast Suisun strata Secchi 
data from data in the remaining spatial strata during the same time period. 
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Appendix C 

Supplementary figures 

 
Figure C1. Results of sensitivity analysis, when South Delta distributions were modeled with 
fish survey observations. Bars show the geometric mean of population growth rates, when one or 
two data types were fixed at the values measured in high growth year 1998 (dark bars) or low 
growth year 2004 (light bars). Data types were prey density, temperature (Temp.), Secchi depth, 
observed delta smelt spatial distribution (Fish dist.), and Old and Middle River flow (OMR). 
Horizontal reference lines indicate the mean 𝜆𝜆AB when all data was allowed to vary at the values 
measured in 1995-2014 (solid line) and the maximum and minimum 𝜆𝜆AB simulated in 1998 and 
2004 when all data was allowed to vary (dotted lines).  
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Figure C2. Results of sensitivity analysis, when no turbidity-mortality relationship was modeled. 
Bars show the geometric mean of population growth rates, when one or two data types were 
fixed at the values measured in high growth year 1998 (dark bars) or low growth year 2004 (light 
bars). Data types were prey density, temperature (Temp.), Secchi depth, observed delta smelt 
spatial distribution (Fish dist.), and Old and Middle River flow (OMR). Horizontal reference 
lines indicate the mean 𝜆𝜆AB when all data was allowed to vary at the values measured in 1995-
2014 (solid line) and the maximum and minimum 𝜆𝜆AB simulated in 1998 and 2004 when all data 
was allowed to vary (dotted lines). 
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