
 

1 
 

Evaluating the Influence of Proportional Entrainment Loss on 1 

Subadult Delta Smelt Survival Using the Maunder and Deriso in 2 

R (MDR) Model  3 

  4 

Analysis by:   5 

Michael Tillotson, Senior Fisheries Biologist, ICF (Mike.Tillotson@icf.com)  6 

John Brandon, Senior Biometrician, ICF  7 

For:   8 

Metropolitan Water Department of Southern California  9 

 November 29th, 2023  10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 



 

2 
 

Executive Summary 23 

The marked and persistent decline in Delta Smelt abundance across multiple decades has 24 

been accompanied by massive changes in the Sacramento - San Joaquin Delta ecosystem, 25 

including both to physical habitats and trophic conditions, and also substantial changes in water 26 

management. Clarifying the relative influence of these various factors on Delta Smelt population 27 

dynamics is critical for understanding the effectiveness of past management actions, and for 28 

prioritizing current and future recovery efforts. Of particular interest is the degree to which the 29 

abundance and population dynamics of Delta Smelt are influenced by direct entrainment into 30 

large-scale water diversions in the Delta, and whether historic changes to water operations have 31 

been sufficient to reduce entrainment risk. Multiple modeling efforts have previously attempted 32 

to address this issue of key management importance, including the model published by Maunder 33 

and Deriso (2011) where the authors evaluated models including total salvage as a covariate of 34 

both survival and recruitment, but the results of this effort were ambiguous with regard to the 35 

effect of salvage. This report describes an effort to clarify entrainment effects on Delta Smelt 36 

population dynamics using an updated and generalized version of Maunder and Deriso’s analysis 37 

(hereafter referred to as the Maunder and Deriso in R or MDR model), along with 10 additional 38 

years of data and an updated approach to quantifying Delta Smelt entrainment. 39 

 The MDR is a statistical life-cycle model that is fit to data, including indices of stage-40 

specific Delta Smelt abundance, and can also accommodate covariates in a flexible manner. 41 

Entrainment of Delta Smelt during the sub-adult phase has been hypothesized to appreciably 42 

effect the population’s survival through this stage, and various metrics of entrainment were 43 

therefore considered as covariates of sub-adult survival. Expanded salvage estimates (i.e. the 44 

total number of sub-adult Delta Smelt entrained on an annual basis) were used in Maunder and 45 
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Deriso’s 2011 analysis, but this metric may underestimate the effect of entrainment at low 46 

population sizes (e.g. 100 fish entrained is likely consequential for a population of 1,000, but not 47 

for a population of 1,000,000). Proportional entrainment loss (PEL) accounts for this by 48 

estimating the proportion of a life stage entrained annually. This analysis considered both 49 

entrainment metrics, in addition to a large set of other candidate covariates previously identified 50 

as potential determinants of Delta Smelt population dynamics, to evaluate the effects of 51 

entrainment on the survival of sub-adult Delta Smelt using several related applications of the 52 

MDR.  53 

 As a statistical model, the MDR is suitable for identifying and evaluating the strength of 54 

correlations between each of the modeled vital rates and one or more candidate covariates. An 55 

extensive model comparison and selection effort was first undertaken to identify one or more 56 

significant covariates for each survival or recruitment transition (i.e. identify the “best” model, 57 

given the candidate covariates). The overall best model included density-dependence in sub-adult 58 

survival, but this model was only marginally preferred to a density-independent model. In the 59 

interest of clarity and consistency with other modeling efforts, the density-independent model 60 

was used for this analysis. This best model was then iteratively modified to include only one 61 

covariate of sub-adult survival, and the resulting coefficient estimates were compared to evaluate 62 

the strength of survival-entrainment relationships relative to other potential covariates. Although 63 

both expanded salvage and PEL were identified as significant covariates of sub-adult survival, 64 

the “best” model did not include any of the direct metrics of entrainment and instead retained 65 

indirect metrics of entrainment, South Delta turbidity and combined Old and Middle River flow 66 

(OMR), as covariates of this transition.  67 
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A modified version of the “best” model, which included PEL as the sole covariate of sub-68 

adult survival, was then used to project Delta Smelt population dynamics forward for 21 years, 69 

recycling 1995-2015 covariate values for all variable except PEL, was evaluated under seven 70 

scenarios ranging in average annual loss from <1% to ~19%. The relative trajectories of the 71 

projected populations were intuitive, with the lowest PEL scenarios seeing the largest population 72 

growth. Even in the high PEL scenarios, positive population growth was achieved through the 73 

first six years of the projections (with non-PEL covariate values from the “best” model, 74 

including temperature, turbidity and food variables equivalent to the 1995-2000 period). 75 

Thereafter, the population trajectories diverged with higher PEL scenarios resulting in declines 76 

while lower PEL scenarios had increasing or stable populations.   77 

This analysis reveals that, at least within the MDR life-cycle model framework, sub-adult 78 

Delta Smelt survival is significantly and negatively correlated with PEL. Moreover, the strength 79 

of this effect is equal or larger than that of any other single covariate. However, PEL was 80 

excluded from the “best” model as identified through an extensive model selection procedure; 81 

the conditions associated with greater likelihood of sub-adult and adult Delta Smelt being present 82 

in the South Delta (i.e. low OMR and high turbidity) were instead preferred by the model. This 83 

finding is consistent other recent studies that found South Delta turbidity and OMR were most 84 

strongly associated with entrainment mortality throughout the Delta Smelt life cycle.  85 

Comparison of projected scenarios indicated that consistently low rates of PEL could result in a 86 

stable or growing Delta Smelt population. In the scenarios in which the population did not 87 

markedly decline, PEL never rose above 4%. Since 2009, estimated PEL has remained in this 88 

same range, indicating that entrainment of sub-adults is unlikely to be limiting population growth 89 

at present, but could have contributed to declines that occurred during the early 2000s. 90 
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Persistently low Delta Smelt abundances in recent years in spite of substantial reductions in 91 

entrainment suggest that other conditions now constrain Delta Smelt population growth. 92 

Nevertheless, the results of this work indicate that in the absence of efforts to reduce Delta Smelt 93 

entrainment population declines between 2009 and 2016 likely would have been more severe.  94 

 95 

1. Introduction 96 

The factors contributing to a multi-decade decline in the survival and abundance of Delta 97 

Smelt have received considerable attention since the early 2000s. A wide range of analytical 98 

approaches have been applied in an attempt to partition the influence of a broad suite of potential 99 

drivers while accounting for substantial uncertainty associated with sampling pelagic species, 100 

changes in data availability, an evolving regulatory and water operations landscape and a Delta 101 

ecosystem that has experienced multiple larger perturbations (e.g. invasions, drought). The 102 

variables identified as most strongly associated with declines in Delta Smelt have varied 103 

somewhat between studies; likely owing to differences in analytical approach, covariates 104 

considered and/or the time periods analyzed. An ongoing Structured Decision-Making (SDM) 105 

effort by the Collaborative Adaptive Management Team (CAMT) is attempting to interrogate 106 

these differences through application of four previously published Delta Smelt life-cycle models 107 

using a shared dataset, candidate covariates and hypothetical management actions.  108 

Among the many potential covariates of Delta Smelt survival and abundance that have been 109 

evaluated, of particular management relevance is the influence of direct mortality resulting from 110 

entrainment into large, South Delta water diversions. Because of its emphasis on evaluating 111 

management options, the CAMT SDM effort is testing the influence of covariates hypothesized 112 
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to drive such entrainment (e.g. South Delta turbidity, OMR) rather than observed entrainment 113 

itself. An alternative analytical approach is to treat direct metrics of entrainment derived from 114 

observations of Delta Smelt in South Delta fish salvage facilities as covariates of life stage-115 

specific survival. The influence of entrainment on post-larval and sub-adult Delta Smelt survival 116 

was evaluated directly by Maunder and Deriso (2011) by including total annual salvage as a 117 

candidate covariate of survival during either the March-July or December-April period. Although 118 

salvage during the December-April period (i.e. sub-adult and adult entrainment) was identified to 119 

have a substantial influence on recruitment (i.e. the coefficient for adult entrainment was among 120 

the largest estimated), models including salvage were deemed by the authors to have problematic 121 

characteristics, and so no conclusions on the role of entrainment were ultimately drawn. Annual 122 

indices of the absolute number of fish observed in the salvage facilities may also be 123 

inappropriate for evaluating impacts on population dynamics because, for a given number of fish 124 

salvaged, the impact on the population will vary depending on the current population size. 125 

Salvage as a proportion of some population estimate may therefore be a more realistic reflection 126 

of any impacts on entrainment on Delta Smelt dynamics. 127 

Refined estimates of proportional Delta Smelt loss to entrainment during the winter and 128 

early spring (i.e. adult Proportional Entrainment Loss or PEL) have recently been produced 129 

(Smith et al. 2022), and so it is now possible to readily compare the influence of relative (PEL), 130 

absolute (Annual salvage) and indirect (e.g. OMR, South Delta turbidity) metrics of entrainment 131 

on Delta Smelt population dynamics. The objective of this study was to undertake such a 132 

comparison using an updated version of Maunder and Deriso’s Delta Smelt life cycle model, in 133 

order to clarify a) whether entrainment of sub-adult and adult Delta Smelt during the winter and 134 
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early spring has a measurable influence on survival, and b) which, if any, metric(s) of 135 

entrainment have the strongest support as covariates of survival during this period.  136 

2. Methods 137 

2.1 Model Background 138 

In 2021 and 2022 Mark Maunder developed a generalized life cycle model based on 139 

extending the model described by Deriso and Maunder (2011) [henceforth referred to as the 140 

M&D model] and applied the resulting model to Delta Smelt, with candidate covariates and 141 

several of the model extensions borrowed from Polansky et al. (2021).  Important differences 142 

between the original M&D model and the application of Polansky et al. nevertheless remain, and 143 

include model structure, survey indices used, inference method, covariates tested and 144 

consideration of density dependence; these differences are summarized in Table 1. The updated 145 

model, hereafter referred to as the MDR, is programmed in Template Model Builder (TMB; 146 

Kristensen et al., 2016) within R (R Core Team, 2017) in a Frequentist, state-space framework 147 

allowing for both process variation and observation error. Transition between stages (i.e. survival 148 

and the stock-recruitment relationship) can be a function of density and covariates, in addition to 149 

unexplained temporal variation (process error). 150 

To best allow for comparison with the results of Polansky et al. (2021), the MDR was 151 

modified from the original M&D model to include an additional stage (adults; with the other 152 

stages adjusted appropriately) and estimate catchability (survey bias). The MDR is also fit to two 153 

additional indices of abundance for adults (spring midwater trawl prior to 2001 and spring 154 

Kodiak trawl for 2001 and later), and the likelihood function was changed to a log-normal 155 

likelihood (see Table 1 for additional detail). The period (1995-2015) and the covariates used by 156 
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Polansky et al. (2021) are different than those used in Maunder and Deriso (2011), and so were 157 

also updated in the MDR. A user guide along with a more complete description of the MDR 158 

model updates are included in Appendix A.  159 

Table 1. Comparison of MDR model characteristics with the USFWS Delta Smelt LCM and the 160 

original Maunder and Deriso model. 161 

Characteristic M&D Polansky et al. MDR 

Time frame 1972-2006 1995-2015 (1994 

adults also included) 

1995-2015 

Stages 3 (larvae, juveniles, 

adults) 

4 (post larvae, 

juveniles, sub-adults, 

adults) 

4 (post larvae, 

juveniles, sub-

adults, adults) 

Stock-recruitment 

survival process 

variation (Adult to 

larvae survival) 

Lognormal Lognormal Lognormal 

Other survival process 

variation 

Lognormal Logit-normal Lognormal 

Density dependence Beverton-Holt, Ricker, 

or Deriso-Schnute 

None Beverton-Holt 

(Ricker and 

Deriso-Schnute 

are also possible) 

Indices of abundance 3 (20mm, summer tow 

net, fall midwater 

trawl) 

4 (20mm, summer tow 

net, fall midwater 

trawl, spring Kodiak 

trawl, and spring 

midwater trawl) 

4 (20mm, summer 

tow net, fall 

midwater trawl, 

spring Kodiak 

trawl, and spring 

midwater trawl) 

Catchability (survey 

bias) 

Catchability fixed at 1 

(assumes can’t 

estimate absolute 

abundance) 

Catchability fixed at 

one for 20mm and for 

spring Kodiak trawl 

(2001 and later), 

estimated for other 

surveys and years, but 

spring midwater trawl 

is assumed equal to 

the fall midwater 

trawl.      

Catchability fixed 

at one for 20mm 

and for spring 

Kodiak trawl 

(2001 and later), 

estimated for 

other surveys and 

years, but fall and 

spring MWT are 

assumed equal.  

However, this had 

confounded 

parameters, so just 
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estimated the 

catchability for 

Adult spring 

midwater tow     

Observation error Normal with known 

standard deviation that 

varies by year 

Lognormal with 

known CV that varies 

by year (also 

investigated 

estimating CV scaler) 

Lognormal with 

known CV that 

varies by year  

Inference framework Frequentist state-space Bayesian state-space Frequentist state-

space 

Model selection Two at a time 

selection based on 

model averaging of 

AICC weights (density 

dependence model 

selection was based on 

full factorial without 

covariates)  

Include all covariates 

and evaluate Bayesian 

interval coverage of 

zero  

Stochastic 

exploration of 

covariate 

combinations 

followed by 

stepwise, AICc-

based model 

selection.  

Covariates Various (see Appendix 

A) 

Various (see 

Appendix A) 

Various (see 

Table 3) 

 162 

2.2 Application of MDR to Management Scenario Evaluation 163 

Building from Mark Maunder’s recent work, ICF began working with the MDR in 2022 164 

in support of CAMT structured decision-making efforts. The underlying population dynamics 165 

model, and the statistical model fitting procedures, as coded in C++ were not modified for the 166 

analyses described here. Rather, ICF significantly expanded upon the R code used to fit, validate, 167 

and project the population dynamics model given alternative sets of environmental covariate 168 

values and associated model parameter estimates. Primary extensions include streamlined 169 

processing of covariate data to allow for rapid iteration between model formulations, an 170 

automated process for generating scenarios with modified covariate values based on hypothetical 171 

management actions, a series of functions for producing visualizations that aid in model 172 
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interpretation and validation, and a function-based approach to model projection under multiple 173 

scenarios.  174 

Within this framework the MDR has been utilized for the CAMT structured decision-175 

making (SDM) process to evaluate the influence of proposed management actions and portfolios 176 

on Delta Smelt population growth rates. The general workflow for these evaluations as follows: 177 

1) Select candidate covariates of each life-stage transition. 178 

a. An initial, extensive set of candidate covariate data based on the Smith et al. 179 

(2021) analysis was provided by USFWS. To this set ICF added a lagged 180 

effect of fall X2 on recruitment which was evaluated, and found to be a 181 

significant predictor of recruitment, in the original USFSW life cycle model 182 

publication (Polansky et al., 2021), but not evaluated in the Smith et al., 183 

(2021) analyses.  184 

2) Select a base model.  185 

a. Initial evaluations used a base model that included covariates intended to 186 

match those reported in Smith et al. (2022) as closely as possible. This 187 

facilitated the most direct comparison of results between the two models.  188 

b. Subsequently, it was suggested that the MDR be optimized via a separate 189 

model selection procedure so that any important differences between models 190 

could be better evaluated. The “best” model identified through model 191 

selection (described below) was therefore used for later action/portfolio 192 

evaluations. Depending on the specifics of an action or portfolio, the “best” 193 

model was adapted to include as many of the managed covariates as possible 194 

in the event that they were not already included.  195 
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3) Fit the model with and without density dependence. 196 

a. The model is fit using maximum likelihood with optimization algorithms 197 

provided by Template Model Builder (TMB).  198 

4) Project the model with baseline and alternative covariate values. 199 

a. Although theoretically possible, the state-space nature of the MDR poses 200 

challenges for backward-looking projection. That is to say, it is difficult to 201 

“rewind” the model to the beginning of the time-series used in model fitting 202 

and project forward from the historical abundances. As a result, model runs 203 

were projected forward from 2015, the last year in the data used for fitting.  204 

b. For each model and portfolio/action, baseline projections were produced by 205 

projecting Delta smelt abundance forward using unmodified covariate values; 206 

the covariates timeseries used for fitting were simply recycled, and the 207 

projections were run forward 21 years (i.e. the number of years used in model 208 

fitting). For density dependent models, additional years were projected to 209 

allow population equilibrium to be achieved before covariate effects were 210 

applied. This was achieved by adding 30 years to the beginning of the 211 

projection period with all covariates held at their mean values. Following this 212 

stabilization period, the covariate data were recycled as described above. 213 

c. The predicted effect of various management actions or portfolios of actions 214 

was evaluated by modifying the historical covariates to reflect alterations in 215 

water operations, water quality and/or food availability. Modified timeseries 216 

of covariates were then used in the model projection phase. The development 217 

of portfolios and their predicted effects on covariate values was undertaken by 218 
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CAMT and will not be further described here; neither salvage nor proportional 219 

entrainment were evaluated via the CAMT SDM process. Scenarios for 220 

evaluating the influence of proportional entrainment are discussed below in 221 

section 2.5. 222 

5) Compare population trajectories between baseline and modified projections. 223 

a. Projected populations trajectories for each scenario were compared with one 224 

another and with the baseline (i.e. projection with unmodified historic 225 

covariates) to evaluate the relative performance of Delta Smelt under varying 226 

levels of entrainment loss during December-April.  227 

b. Note that the projections should be used only for comparative purposes and 228 

should not be interpreted as accurate predictions of future abundances. In 229 

developing and evaluating the MDR, Mark Maunder noted that forward 230 

projection resulted in highly uncertain abundance estimates because even after 231 

the inclusion of covariates and density dependence, a large amount of 232 

unexplained temporal variation in survival remains (see the discussion in 233 

Appendix A).  234 

In contrast to this recent application of the MDR for management action evaluation via 235 

the CAMT SDM process, the goal of this analysis was to evaluate the impact of a single factor 236 

on population viability. In light of these differing objectives, several additions were made to the 237 

workflow above, and these are described in the following sections.  238 
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2.3 Comparison and Selection of Entrainment Indices 239 

The appropriate metric for measuring the impact of entrainment on Delta Smelt requires 240 

some consideration. Given a relatively stable population, raw salvage can provide a useful proxy 241 

for the impact of entrainment on Delta Smelt. However, in a scenario where long-term 242 

directional change in abundance is occurring, raw salvage may be a poor proxy for this impact. 243 

For example, salvaging 1,000 fish would have a markedly different impact on a population of 244 

1,000,000 versus a population of 10,000 Delta Smelt. With the estimated sub-adult population of 245 

Delta Smelt declining by more than two orders of magnitude since the 1990s, it seems possible 246 

that raw salvage is an inappropriate metric for evaluating entrainment effects. In a population 247 

with highly variable or directionally changing abundance the proportion of the population 248 

entrained is likely to be a much more relevant and direct index of impact. Such proportional 249 

estimates have recently been produced for adult Delta Smelt (i.e. loss during the December-April 250 

period; Smith et al. 2022) and these values were used for the present analysis.  251 

Estimates of adult Delta Smelt proportional entrainment loss (PEL) were obtained from 252 

Smith et al. (2022) and detailed methods are provided therein. Briefly, PEL was calculated by 253 

dividing daily counts of adult Delta Smelt observed in the state and Federal salvage facilities by 254 

estimated daily populations of adult Delta Smelt during the winter entrainment season (typically 255 

December through April); daily estimates were then aggregated to produce annual PEL values. 256 

For years prior to the initiation of the Spring Kodiak Trawl (SKT) in 2002 an additional 257 

modeling step was required for estimating daily population size. In order to account for the 258 

additional uncertainty introduced by this step, high and low bookends are reported for PEL 259 

estimates prior to 2002. Two separate time-series of PEL were therefore considered for this 260 
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analysis by incorporating these bookend values. Additionally, each PEL covariate was evaluated 261 

both in its raw, proportional form as an unbounded variable in logit space. As with all other 262 

covariates, all entrainment metrics were standardized to zero-mean and unit variance prior to use 263 

in the MDR model. Note that adult PEL is modeled as a covariate of sub-adult survival because 264 

this transition is bounded by the sub-adult (FMWT) and adult (SKT/SMWT) abundance indices.  265 

266 

Figure 1. Standardized entrainment covariate values, 1995-20165 267 

Although minor differences exist between the resulting covariate time series, the general patterns 268 

are similar: intermediate values with a declining trend prior to 2000, a period of markedly higher 269 

values from 2000-2005 and very low values since 2006. An exploratory comparison of results 270 
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using either proportions or logit-transformed PEL values was made with little impact on the 271 

results, and so the logit-transformed values were used in subsequent analyses.  272 

2.4 Model selection 273 

A wide range of environmental and operational covariates have been hypothesized to impact 274 

recruitment and/or life-stage specific survival in Delta Smelt. As a statistical model, the MDR is 275 

suitable for identifying and evaluating the strength of correlations between each of the modeled 276 

vital rates and one or more candidate covariates. In contrast to a mathematical simulation, such 277 

as the Delta Smelt individual based model (IBMR), the form and strength of any covariate 278 

influence cannot be manually specified, and so hypothetical management scenarios can only be 279 

compared through projection when a managed covariate is found to significantly influence one 280 

or more vital rate. A commonly used approach for selection of an optimal model is to begin with 281 

all candidate covariates included and then sequentially remove variables based on some selection 282 

criterion. However, this stepwise approach has several important limitations when applied to the 283 

MDR model: 284 

1) Inclusion of multiple correlated covariates of a single life-stage transition in the model 285 

tends to produce poor fits and obscure the influence of such covariates. Stepwise 286 

selection must therefore be initiated from a candidate set where covariates of a given 287 

transition are not highly correlated (i.e. r> ~0.6-0.7).  288 

2) The importance of a covariate may depend on the inclusion of another covariate in the 289 

same, or a separate life-stage transition, and in such cases a stepwise approach to model 290 

selection can exclude an important covariate.  291 
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3) Retention of a covariate may depend on whether density dependence is included in one or 292 

more of the life-stage transitions.  293 

A global model selection approach where all potential combinations of covariates are 294 

evaluated would theoretically overcome these limitations, but such an approach is precluded by 295 

computational time: given a large pool of potential survival and recruitment covariates, and four 296 

separate transitions to which covariates may be applied, the number of potential model 297 

parameterizations is extremely large. As an alternative approach, a stochastic model selection 298 

procedure was therefore developed that attempts to realize the benefits of global model selection 299 

(i.e. identifying potential synergies or dependencies between covariates) within a reasonable 300 

amount of computational time. The stochastic approach involved random selection of two 301 

covariates per transition from the complete set of candidates (Table 2) and random selection of 302 

which, if any, life stages were subject to density dependence (options for density dependence 303 

were weighted such that there was equal probability of no density dependence and any density 304 

dependence).  305 

Table 2. Candidate Covariates included in Model Selection 306 

Covariate^ 

Impacted 

Transition 

Covariate aggregate 

months* 

X2 Post-larval survival June-August 

Delta Outflow Post-larval survival June-August 

Delta mean Temperature Post-larval survival June-August 

Delta mean Secchi depth Post-larval survival June-August 

Food (small) Post-larval survival June-August 

Food (small/large) Post-larval survival June-August 

Inland Silverside Index Post-larval survival June-August 

Threadfin Shad Index Post-larval survival June-August 

Tridentiger Goby Index Post-larval survival June-August 

South Delta Secchi Depth Post-larval survival April-June 

OMR Post-larval survival April-June 

X2 Juvenile Survival September-November 
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Delta Outflow Juvenile Survival September-November 

Delta mean Temperature Juvenile Survival September-November 

Delta mean Secchi depth Juvenile Survival September-November 

Food (large) Juvenile Survival September-November 

Food (small/large) Juvenile Survival September-November 

Age 1+ Striped Bass Index Juvenile Survival September-November 

OMR Sub-adult Survival December-February 

Delta Outflow Sub-adult Survival December-February 

South Delta Secchi Depth Sub-adult Survival December-February 

Delta mean Temperature Sub-adult Survival December-February 

Delta mean Secchi depth Sub-adult Survival December-February 

Proportional Entrainment (Low Bookend) Sub-adult Survival December-February 

Proportional Entrainment (High Bookend) Sub-adult Survival December-February 

Salvage Sub-adult Survival December-February 

Age 1+ Striped Bass Index Sub-adult Survival December   

Food (large) Sub-adult Survival December-February 

Delta Outflow Recuitment March-May 

Delta mean Temperature Recuitment March-May 

Delta mean Secchi depth Recuitment March-May 

Food (small) Recuitment March-May 

Food (large) Recuitment March-May 

Inland Silverside Index Recuitment March-May 

Tridentiger Goby Index Recuitment March-May 

X2 Recuitment Prior September-November 

^  Covariate data were obtained from USFWS; sources are summarized in Smith et al. (2021) 307 
*Aggregation periods based on methods from Smith et al. (2021) 308 
 309 

 310 

For each randomly generated model, Akaike’s Information Criterion corrected for small 311 

sample sizes (AICc) was calculated as an index of overall model performance. Next, 80% 312 

confidence intervals were calculated for each covariate in the model, and were evaluated for 313 

significance (i.e. overlap of zero). This stochastic model fitting procedure was repeated 400,000 314 

times. After completion of stochastic model building, the results were summarized by 315 

calculating, for each candidate covariate, the proportion of times the covariate was significant in 316 

a model, given that it was selected (i.e. 80% confidence interval excluding zero), and the average 317 

AICc of the models in which a covariate was included. In addition, the model with the lowest 318 
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overall AICc score was used as a starting point for a final, stepwise model selection approach in 319 

order to evaluate whether a better model could be produced by including more or less than two 320 

covariates per transition.  321 

2.5 Evaluating the Magnitude of Sub-Adult Entrainment Effects 322 

 Examination of correlations between candidate covariates and sub-adult survival can 323 

provide some guidance on the likely influence of the covariates on Delta Smelt population 324 

dynamics. Pearson correlation coefficients of the log-transformed ratio of the adult and sub-adult 325 

indices (i.e. log(N_Adults/N_SubAults)) and candidate covariates were calculated. Because adult 326 

index values prior to 2001 were derived from the Spring Midwater Trawl survey, these earlier 327 

values were adjusted based on the model-estimated catchability coefficient (q = 0.144) prior to 328 

the calculation of correlation. While these raw correlations are readily interpretable, they do not 329 

account for the complexities and dependencies of the Delta Smelt life cycle. In contrast, the 330 

estimated coefficients for each modeled covariate do account for such complexities, and because 331 

covariates are standardized prior to model fitting the resulting coefficients give a general picture 332 

of the relative magnitude of their influence on sub-adult survival in the context of the broader life 333 

cycle. Further comparison of entrainment impacts with other potential covariates of sub-adult 334 

Delta Smelt survival was therefore achieved by modifying the “best” model identified through 335 

the model selection procedure to include only one covariate for the sub-adult to adult transition 336 

and then refitting each model; covariate for all other transitions were left unchanged during this 337 

exercise. Coefficient estimates for each of the potential sub-adult survival covariates were then 338 

extracted from the model results. The resulting single-covariate results were also compared with 339 
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the coefficient estimates from the “best” model which included two covariates of sub-adult 340 

survival.   341 

 While the coefficient estimates allow for evaluation of the relative importance of 342 

covariates, and their confidence intervals indicate whether a covariate has any significant effect 343 

on survival, they do not allow for straightforward interpretation of the magnitude of impact on 344 

the abundance or population growth. Of ultimate interest here is the degree to which modifying a 345 

survival covariate within a realistic range impacts the long-term trajectory of the Delta Smelt 346 

population. Following the workflow described in Section 2.2, seven scenarios of entrainment 347 

were therefore projected forward for 21 years (Table 3).  The model formulation used for these 348 

projections was modified from the “best” model covariates shown in Table 4 by replacing the 349 

sub-adult survival covariate with the high bookend estimates of logit-transformed PEL; the other 350 

PEL time-series including the low bookend values and non-transformed were also tested, but 351 

with only minor impact on results, and for simplicity are not reported here.  352 

It is important to note that hypothetical entrainment scenarios were unrealistically 353 

simplified, and as noted previously, the projections are inherently uncertain and should not be 354 

taken as actual predictions of future Delta Smelt abundance, but instead used only for 355 

comparative purposes. The seven scenarios include a baseline projection in which historic 356 

covariate values are simply reused without modification, four constant scenarios where PEL is 357 

held at the 5th (low), 25th, 50th (median) or 75th (high) percentile of the historic estimates, and two 358 

additional scenarios with PEL values held constant only before or after 2008/2009. These final 359 

two scenarios are intended to capture management changes which appear to have effectively 360 

limited Delta Smelt since 2009: the ReducePreBiOp scenario simulates a situation in which 361 
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entrainment was also reduced pre-2009 while the NoBioOp scenario simulates conditions in 362 

which management did not change and entrainment continued at the pre-2009 average.  363 

 364 

 365 

Table 3. Proportional Entrainment Loss Scenarios Used in Forward Projection of MDR Model 366 

Scenario Name PEL Low Value PEL High Value Modified Period 

Base N/A N/A None 

Entrainment_Low 0.6% 0.8% All 

Entrainment_ReducePreBiOp 1.0% 1.0% 1995-2008 

Entrainment_25th 1.7% 1.9% All 

Entrainment_Median 4.8% 7.6% All 

Entrainment_NoBiOp 12% 15% 2009-2015 

Entrainment_High 14% 19% All 

 367 
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 368 

Figure 2. Time-series of PEL non-transformed scenario covariate values 369 

3. Results 370 

3.1 Model Selection 371 

     The overall “best” model identified after application of the hybrid stochastic-stepwise 372 

model selection process included South Delta Secchi depth and Beverton-Holt density 373 

dependence for the sub-adult survival transition. The lowest AICc model excluding density 374 

dependence also included OMR as a significant covariate of sub-adult survival (Table 4.). 375 

Models where ΔAICc <2 are generally considered to be essentially equal in terms of parsimony, 376 

and so based on this analysis the role of density dependence remains equivocal. Notably, direct 377 

measures of sub-adult entrainment were not included in the best model. 378 

Table 4. Summary of “best” models as identified through a hybrid stochastic and stepwise model 379 
selection procedure. 380 

 With Density-Dependence No Density-Dependence 
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Density Dependent Transition Sub-adult Survival N/A 

Post-Larval Survival Temperature_mean_Jun0Aug0 

NJACM_BPUV_Jun0Aug0* 

Temperature_mean_Jun0Aug0 

NJACM_BPUV_Jun0Aug0* 

Juvenile Survival Secchi_mean_Sep0Nov0 

Temperature_mean_Sep0Nov0 

Secchi_mean_Sep0Nov0 

Temperature_mean_Sep0Nov0 

Sub-Adult Survival SouthSecchi_mean_Dec0Feb1 OMR_Dec0Feb1 

SouthSecchi_mean_Dec0Feb1 

Recruitment Fall_X2_Lag N/A 

Minimum AICc 215 217 

*Summer X2 or Outflow can be substituted for summer food with negligible impact on AICc 381 

Direct and indirect metrics of sub-adult Delta Smelt entrainment were nevertheless both 382 

consistently identified to be significant covariates of survival. Ranked by the frequency with 383 

which a covariate was found to be significant (given that it was randomly selected to be included 384 

in a model), the five highest ranked variables are all relevant to South Delta entrainment for 385 

density independent models. OMR was the covariate most frequently identified to be significant 386 

in the absence of density dependence and was retained in nearly all randomly generated models 387 

in which it was included. South Delta Secchi depth was also retained in nearly every model 388 

where it appeared, regardless of density dependence. PEL high, salvage and PEL low followed 389 

with each being retained in more than 75% of the density-independent models. Models that 390 

included OMR had substantially lower average AICc values than for any other variable (Figures 391 

3 and 4). Inclusion of density dependence substantially reduced the likelihood the PEL variables 392 

would be significant covariates of survival but increased the likelihood of raw salvage being 393 

significant.  394 
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 395 

 396 

 397 

 398 

 399 

 400 

Figure 3. Results of stochastic model selection with no density dependence  401 

 402 
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 403 

Figure 4. Results of stochastic model selection with density dependence  404 

3.2. Correlation with Covariates and Comparison of Estimated 405 

Coefficients 406 

 407 

 Comparison of candidate covariates and the log ratio of adult to sub-adult Delta Smelt 408 

abundance indices revealed modest correlations for all entrainment related covariates including 409 

indirect (OMR and South Delta Secchi depth), absolute (Salvage) and relative (PEL) metrics 410 

(Table 5). The direct metrics all had the largest, and similar Pearson correlation coefficients 411 

ranging from -0.63 to -0.67. The indirect entrainment metrics showed somewhat weaker 412 

correlation and the remaining candidate covariates showed minimal correlation.  413 

 414 

 415 
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Table 5. Pearson Correlation Coefficients (r) for sub-adult survival (log(Adults/sub-adults)) and 416 

candidate covariates 417 

Covariate Correlation Coefficient 

OMR 0.40 

Delta Outflow -0.03 

South Delta Secchi Depth 0.49 

Delta mean Temperature -0.09 

Delta mean Secchi depth 0.42 

Proportional Entrainment (Low Bookend) -0.63 

Proportional Entrainment (High Bookend) -0.67 

Salvage -0.65 

Age 1+ Striped Bass Index -0.17 

Food (large) 0.22 

 418 

For fitted models containing a single sub-adult survival covariate, the high bookend proportional 419 

entrainment variable was found to have the largest individual effect on sub-adult survival. When 420 

both OMR and South Delta turbidity were included, as is the case in the “best” model, the 421 

resulting coefficients were somewhat larger than for PEL (Figure 5), suggesting some potential 422 

synergistic effect between these two indirect entertainment covariates.  423 

 424 

 425 



 

26 
 

 426 

Figure 5. Comparison of estimated model coefficients for selected candidate covariates of Delta 427 

Smelt sub-adult survival 428 

3.3. Comparison of Projected Adult Abundance Across Entrainment 429 

Scenarios 430 

 Based on the marginal improvement of AICc with the inclusion of density dependence 431 

and apparently reduced influence of PEL for these models, projections were run only without 432 

density dependence. This decision is not intended to ignore the need to clarify what, if any, role 433 

density dependence has played in Delta Smelt population dynamics, and this issue is addressed 434 

further in the discussion. However, without stronger AIC-based evidence supporting the 435 

inclusion of density dependence, we have chosen to avoid the added complexity for this analysis. 436 

Forward projection of PEL scenarios indicates a substantial impact of entrainment on Delta 437 

Smelt population trajectory. Predictably, the scenarios with the lowest entrainment (Low and 438 
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Reduce_PreBiOp) resulted in consistently larger adult populations than the other scenarios 439 

(Figure 6). 440 

 441 

Figure 6. Modeled adult Delta Smelt log abundance indices across 21 years of forward 442 

projection 443 

 In these consistently low entrainment scenarios, the populations grew rapidly to very large sizes 444 

and then remained largely stable across the final 10 years of projection. In contrast, models 445 

projected continuing declines in the higher entrainment scenarios. The magnitude of differences 446 
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between these scenarios and the baseline projection are thus extreme, and for low entrainment 447 

scenarios are almost certainly unrealistically optimistic. One result of interest is the comparison 448 

between the baseline and No_BiOp scenarios, which as expected, overlap completely through the 449 

first 15 years of projection. However, the two projections show strong divergence when the pre-450 

2009 mean entrainment is assumed for the later projection years, suggesting that further declines 451 

in Delta Smelt would have occurred in the absence of entrainment reductions. Figure 7 shows the 452 

distribution of scenario population growth rates relative to baseline projections. These figures 453 

further highlight that population growth was frequently improved relative to baseline, in some 454 

cases substantially, when entrainment loss was consistently low.  455 
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 456 

Figure 7. Ratios of annual population growth rates from modified and baseline projections. 457 
Values larger than 1 indicate a scenario resulted in greater population growth than with baseline 458 

entrainment conditions.  459 

4. Discussion 460 

It is clear from this modeling exercise that, within the MDR life-cycle model framework, 461 

sub-adult Delta Smelt survival is significantly and negatively correlated with indices of 462 

entrainment, including absolute, relative, and indirect metrics. As a single covariate of sub-adult 463 
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survival, proportional entrainment loss showed a stronger influence than any other single 464 

covariate considered (but note that OMR and turbidity have larger coefficients when included 465 

together). The model selection procedure made an implicit comparison of absolute (salvage 466 

counts), relative (PEL) and indirect (OMR, South Delta Turbidity) metrics of entrainment, and 467 

the covariates included in the “best” model suggest that the conditions associated with greater 468 

likelihood of sub-adult and adult Delta Smelt being present in the South Delta (i.e. low OMR and 469 

high turbidity) are better predictors of sub-adult survival than a direct metrics (PEL/salvage). 470 

Exclusion of PEL salvage from the best model does not indicate that these factors are 471 

unimportant, but rather that they explain less of the variability in sub-adult survival than other 472 

variables considered. This could result from the fact that many smelt are likely lost in the South 473 

Delta before ever arriving in the vicinity of the salvage facilities or uncertainty arising from the 474 

salvage sampling process. It may also indicate that OMR and South Delta turbidity have impacts 475 

on survival independent of their association with entrainment risk. In any case, this finding is 476 

consistent with Smith et al. (2021), where South Delta turbidity and OMR were most strongly 477 

associated with entrainment mortality throughout the Delta Smelt life cycle.   478 

 Results from forward projections should be interpreted cautiously and used only for 479 

comparative purposes (See Appendix A for further discussion of uncertainties associated with 480 

projecting the MDR). Nevertheless, projection of adult Delta Smelt abundance under a range of 481 

PEL scenarios indicated that, given the historically observed patterns in the other model 482 

covariates, consistently low rates of PEL could result in a stable or growing Delta Smelt 483 

population. In the scenarios in which the population did not markedly decline, PEL never rose 484 

above 4%. Since 2009, estimated PEL has remained in this same range, suggesting that 485 

entrainment of sub-adults is unlikely to be limiting population growth at present, but was 486 
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correlated with changes in sub-adult survival that occurred in the past including declines during 487 

the early 2000s. The contrast between the baseline conditions and the scenario in which no 488 

entrainment reductions occurred during the later years of projection (Figure 6) indicate that 489 

entrainment management has likely helped to prevent further declines in Delta Smelt abundance. 490 

However, consistent with observations in the real world, in spite of persistently low entrainment 491 

loss none of the projections show a notable increase in abundance during this low-entrainment 492 

loss period. This suggests that some other factor(s) have constrained Delta Smelt population 493 

growth despite low entrainment. In the model described here, the other included covariates are 494 

summer temperature and zooplankton food density and autumn turbidity and temperature, though 495 

these potentially correlate with many other aspects of the Delta ecosystem.  496 

 The results described here are based on a model assuming no density dependence in 497 

survival or recruitment. Given the depleted state of the Delta Smelt population, density 498 

independence has been generally assumed in other life cycle models and the original Maunder 499 

and Deriso model was criticized for its inclusion of density dependence. Nevertheless, in both 500 

the analysis described in Appendix A and the model selection procedure described above, 501 

support remains for the potential of density dependent processes acting on subadult survival. It 502 

was beyond the scope of this analysis to try and resolve this critical issue, and since density-503 

independent models had nearly as strong support as the best density-dependent bases on a 504 

comparison of AICc, we chose to avoid the added complexity of density dependence. However, 505 

inclusion of density dependence has substantial impacts on the model results, including which 506 

covariates are retained, the strength of their influence on survival, and the trajectory of projected 507 

populations. In the best density dependent model, inclusion of Beverton-Holt density dependence 508 

acting on sub-adult survival can serve as a substitute for OMR as a covariate. These two results 509 
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have potentially very different management implications, and a broader discussion and analysis 510 

of density dependence in the Delta Smelt life cycle therefore seems prudent.  511 
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Appendix A. Report from Mark Maunder: Illustration of the Generalized 531 

Life Cycle Model (GLCM) with application to the delta smelt data from 532 

Polansky et al. (2021) 533 

 534 

By Mark Maunder 535 

Introduction 536 

We develop a generalized life cycle model based on extending the model described by Deriso and 537 

Maunder (2011) [henceforth referred to as the M&D model] and applied to Delta smelt. Several of the 538 

extensions are taken from Polansky et al. (2021). The differences between the original M&D model and 539 

the application of Polansky et al. include model structure, surveys used, inference method, and 540 

covariates tested. The differences are listed in Table 1.  541 
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The model is programmed in Template Model Builder (TMB; Kristensen et al., 2016) within R (R Core 542 

Team, 2017). The original M&D model was programmed in AD Model Builder (ADMB; Fournier et al. 543 

2012) and hypothesis testing was applied manually. TMB provides a more efficient method of analyzing 544 

random effects (the approach to implementing the state-space model and the associated process error) 545 

and the R programming environment allows automation of the hypothesis tests. 546 

The code to implement the following analyses is included in file “USFWS working.r”, which in turn 547 

sources several r scripts with additional calculations and functions, and compiles the TMB code 548 

“LHmodel.cpp”, which implements the model.     549 

The Generalized Life Cycle Model  550 

The Generalized Life Cycle Model (GLCM) represents a single cohort life strategy species that dies after it 551 

reproduces (i.e. the final transition is from adults to recruits and very few adults survive to the next time 552 

period e.g. an annual species), but can have any number of stages that the cohort passes through. It is 553 

modelled in a Frequentist (but Bayesian inference is possible in TMB) state-space framework allowing 554 

for both process variation and observation error. Transition between stages (i.e. survival and the stock-555 

recruitment relationship) can be a function of density and covariates, in addition to unexplained 556 

temporal variation (process error). Covariates can also be used to influence the density dependent 557 

relationship or the survey catchability (bias). The model can be fit to any number of surveys representing 558 

any of the stages. There is also flexibility in the timing of density dependence, surveys, process error and 559 

covariates. The covariates can be estimated as random variables to represent uncertainty in the 560 

measurement of the covariates, dealing with missing covariates, or allowing for uncertainty in 561 

projections, but this is not illustrated here.         562 

Application to delta smelt 563 

The GLCM is illustrated with application to Delta smelt following Polansky et al. (2021) as far as practical 564 

by modifying the approach of M&D model. The model of M&D was modified to include an additional 565 

stage (pre-adults), with stages adjusted appropriately, fit to two additional indices of abundance for 566 

adults (spring midwater trawl prior to 2001 and spring Kodiak trawl for 2001 and later), catchability 567 

(survey bias) estimated for summer tow net and fall midwater tow, the catchability for the spring 568 

midwater trawl was set equal to the fall midwater trawl, and the likelihood function was changed to a 569 

log normal (see Table1). [estimation of catchability was confounded with other parameters so in the 570 

final model only catchability for adult abundance in the spring midwater trawl was estimated] The time 571 

period (1995-2015) and the covariates used by Polansky et al. (2021) are different than those used in 572 

Maunder and Deriso (2011). See table 2 for a list of covariates from Polansky et al. (2021) used in this 573 

application. [the single interaction of covariates used in Polansky et al. was not used in this application] 574 

The surveys were fit at the start of the stage before any other processes occurred. Covariates and 575 

process variation were included after density dependence. 576 

Several different analyses were conducted some with and without density dependence. The density 577 

dependence included in the model was based on running all combinations of Ricker, Beverton-Holt, and 578 

density independence combinations for all the stages.   579 

Four different approaches for model selection were used: 580 
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1) Calculating the correlation between the log of the ratio of indices of consecutive life stages and 581 

covariates 582 

2) Running the model for all covariates and determining the confidence intervals on coefficients 583 

that excluded zero 584 

3) Simple forward stepwise regression 585 

4) Two at a time AICC weights based model averaging            586 

Steps in doing the analysis 587 

Compile and load the TMB code 588 

TMB must be installed on the computer to run the model. TMB is installed as an R package and the 589 

library loaded (see https://cran.r-project.org/web/packages/TMB/index.html).   590 

Once installed, load the library using library(TMB) 591 

Read in the R functions 592 

There are several R functions that have been created to automate the model selection. The scripts 593 

containing these functions must be loaded into R. The scripts include: 594 

USFWS_functions.R 595 

LHM functions.R 596 

Test2by2.R 597 

TwoByTwo.R 598 

DD.R 599 

Read in the data and set up the TMB lists 600 

Read in the survey indices of abundance and the covariates. These need to be formatted in the correct 601 

way so they can be included in the TMB data list in the right format. The indices of abundance were 602 

divided by 1,000,000 to improve parameter estimation (avoiding the b parameter of the density 603 

dependence function from being excessively small), so the results are all in millions of fish, where 604 

relevant. 605 

The Polansky et al. model starts with the adults in model year 1994 with the first “recruitment” 606 

covariate being for the transition from Adults in model year 1994 to juveniles in model year 1995. Since 607 

the GLCM model starts with post larvae in model year 1995, the survey index for adults in 1994 is not 608 

used and the covariate for the transition should be removed from the data and the whole set of 609 

covariate values used for “recruitment” in Polansky et al. were therefore lagged appropriately. This also 610 

means that there should be a covariate for “recruitment” in the last year, but it is not used.   611 

The TMB model requires a list of data (data), a list of initial parameter values (pars), a list of 612 

parameters that are treated as random (integrated out using Laplace approximation; random), and a 613 

list defining what parameters are to be fixed and what parameters are shared (map).   614 
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The probability of converging on the global optima will be improved by providing reasonable initial 615 

values for the parameters. Care should be taken to make sure that there are the correct number of 616 

initial values for the covariate coefficients (vector beta). 617 

Two scrips are used to read in the data and set up the TMB lists: 618 

USFWS data.R 619 

USFWS setup.R 620 

Look at the raw correlations 621 

The correlation between the log of the ratio of indices of consecutive life stages and covariates is 622 

calculated. The correlations that include adult abundance are only calculated from 2001 due to the 623 

different surveys used and therefore catchability is not consistent. The correlation is provided in Table 1 624 

and illustrated in Figures 1-4. Many covariates have a correlation greater than 0.3, although some of 625 

them have the wrong sign. These types of correlations should be interpreted with care because they do 626 

not take into consideration the variation in observation error among indices and with time.  627 

Run the model with no covariates 628 

The parameters are estimated using the nonlinear function minimizer nlminb provided in R using the 629 

analytical gradient produced by TMB (other nonlinear optimizers or Bayesian inference methods could 630 

be used).  631 

nlminb(obj$par,obj$fn,obj$gr) 632 

The model passes the nlminb convergence criteria returning 0. The maximum gradient component is 633 

1.976633e-4, which is reasonable. The model fits the survey data reasonably well (Figure 5). 634 

However, the standard errors (SEs) for some of the parameters are extremely large indicating that the 635 

parameters are confounded.  636 

Parameter               Estimate    Std. Error      637 

ln_a  (post-larvae)       -0.8256441  5.707725e+05  638 

ln_a (Juveniles)         -0.2525674  5.707725e+05  639 

ln_q (adults in spring midwater trawl) -0.6295874  5.707725e+05  640 

It is not necessary to estimate the catchability to evaluate the effect of the covariates on survival, unless 641 

a covariate (e.g. entrainment) is used in absolute number of individuals. Therefore, the confounding can 642 

be eliminated by fixing the catchability. However, since there are two indices for the adult stage and the 643 

catchability is only known for one of them, the catchability for the other index must be estimated.  644 

Changing which catchability parameters are estimated is controlled by the TMB map list, where NA 645 

means do not estimate and a number means estimate. [two or more parameters with the same number 646 

means estimate a single value and share it among those paramaters] The following estimates the 647 

catchability for the adult abundance in the spring midwater trawl and fixes the other catchabilities.  648 

USFWS_map$ln_q <- factor(c(NA,NA,NA,1,NA)) 649 
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The model passes the nlminb convergence criteria returning 0. The maximum gradient component is 650 

8.51522e-05, which is reasonable. The model fits the survey data the same as when the two 651 

catchabilities were estimated (Figure 6). The standard errors (SEs) are now all reasonable. The 652 

parameters are essentially the same for all the parameters when the two catchabilities were estimated, 653 

except for some of the “a” parameters for the density dependence function. This model with a single 654 

catchability estimated is used in the rest of this report. 655 

Run the model with all the covariates 656 

The covariates are turned on by removing the beta parameter from the map list (USFWS_map$beta 657 

can be commented out using the # sign). The model passes the nlminb convergence criteria returning 658 

0. The maximum gradient component is 2.502899e-4. The model fits the survey data similar to when 659 

no covariates are included (Figure 7). 660 

The 80% confidence intervals for the estimates of the covariate coefficients (vector beta) are examined 661 

to see if they include zero. If they don’t, it suggests that these covariates are significant. Ten of the 662 

covariates have 80% confidence intervals that don’t cover zero (Table 2 and Figure 8), but two of them 663 

have the wrong sign.  664 

Run the forward stepwise model selection 665 

The forward stepwise model selection requires setting up the matrix of hypotheses, which includes 666 

identifying the covariate, process that is impacted, stage, and the sign of the relationship. The processes 667 

include survival before density dependence “BDD”, survival after density dependence “ADD”, survey 668 

catchability “q”, and the density dependence “b”.  The sign can be restricted to be positive “pos”, 669 

negative “neg”, or either “both”. The forward stepwise model selection is run using function 670 

“LHM.forward”.    671 

The forward stepwise model selection procedure found 7 covariates that provide an AICc within 4 units 672 

of the best AICc (Tables 2 and 3).   673 

The model was run with only these covariates included. This is done by modifying the “design_in_*” 674 

matrices (e.g. design_in_after). The number of initial values for the covariate coefficients (vector 675 

beta) also needs to be adjusted appropriately. 676 

None of the covariates had confidence intervals for their coefficient that included zero (Figure 9).  677 

Run the two-by-two model averaging model selection 678 

The two-by-two model averaging model selection requires setting up the matrix of hypotheses as 679 

described above and is run using function “LHM.twobytwo”.    680 

The two covariates at a time AICc model averaging procedure selects some covariates with the wrong 681 

sign as they can be the right sign when combined with remaining covariates, but none of these were 682 

included in the models that had an AICc within 4 units of the best model.  The models selected are the 683 

same as selected in the forward stepwise model selection, but the first three covariates were selected in 684 

a different order. 685 
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Including density dependence 686 

The full combination of density dependence possibilities which included the Beverton-Holt, Ricker, and 687 

density independence for each stage were evaluated using the function LHM.DD for the model with no 688 

covariates. The best AICc model had density independent processes between all stages except Beverton-689 

Holt between sub-adults and adults. The AICc was 217.71, which is 15.73 units less than the density 690 

independent model with no covariates (233.44). Adding density dependence in any of the other 691 

transition between stages could only reduce the likelihood further by a miniscule amount.     692 

Using the Beverton-Holt model for the transition from sub-adults to adults requires setting the “g” 693 

parameter to -1 and turning on the estimation of the “b” parameter for sub-adults. The initial values for 694 

the “b” parameters should also be adjusted appropriately (e.g. set to -1). Turning on the parameters 695 

requires removing the NA factors from the map list for those parameters, which may require setting the 696 

value to an integer factor if not all parameters in a parameter vector are estimated (e.g. 697 

ln_b=factor(c(NA,NA,1,NA))). The shape of the Beverton-Holt relationship can be seen in 698 

figure 11.  699 

Including all the covariates in the density dependent model converged with a maximum gradient 700 

component of 1.225248e-4, but the process error for sub-adults was estimated to be zero and the 701 

standard errors could not be estimated for the associated variance parameter and one of the covariate 702 

coefficients.  703 

The forward stepwise model selection was applied to the model with density dependence. The forward 704 

stepwise model selection procedure found 7 covariates that provide an AICc within 4 units of the best 705 

AICc (Tables 2 and 4). Running the model with the chosen covariates included did not find any covariate 706 

coefficient (beta) with 80% confidence intervals that covered zero (Figure 10). The shape of the 707 

Beverton-Holt relationship can be seen in figure 12. The two at a time AICc model average procedure 708 

had convergence issues. 709 

 710 

Comparison among model selection approaches 711 

The empirical correlations found 10 covariates with the right sign and a correlation of 0.3 or higher. The 712 

0.3 was an arbitrary value and the observation error was not taken into consideration. The model with 713 

all covariates included found 7 covariates with 80% confidence intervals that did not include zero and 714 

the right sign. Only four of the selected covariates were common between the empirical correlations 715 

and the full model. The forward stepwise and two at a time AICc weights model averaging approach 716 

found the same 7 covariates within 4 units of the best AICc model and 5 of these were the same 717 

covariates selected using the full model 80% confidence interval approach. Including density 718 

dependence selected 7 covariates, including 6 of those chosen using the density independent model. 719 

The density independent model selected OMR for Sub-adult survival while the density dependent model 720 

selected X2 for the stock-recruitment relationship. The two at a time AICc weights model averaging 721 

approach had convergence issues for the density dependence model.   722 
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Projections 723 

The model was projected 10 years into the future with the outflow covariate for post-larvae survival at 724 

“average” levels (covariate set to zero) versus increased outflow (covariate set to 1) for both the density 725 

dependent and density independent models. The density independent model showed a linear decline in 726 

the log abundance, and increasing the OMR reversed the trend. The density dependent model showed 727 

an abrupt increase for both levels of OMR which reduced over time due to the density dependence. 728 

Because the covariates were not treated as random effects (i.e. the input  values for the covariates were 729 

not treated as data with observation error) in this implementation, the uncertainty about the 730 

unspecified covariates is not taken into consideration. However, the results still showed substantial 731 

uncertainty in the projections.  732 

Covariate impacts 733 

The temporal impacts of the covariates are illustrated in Figures 15 (without density dependence) and 734 

16 (with density dependence) by simply showing the exponent of each covariate multiplied by its 735 

associated estimate of the coefficient. The cumulative effect of all the covariates is simply calculated by 736 

taking the product of the individual effects. The impact of density dependence was not account for in 737 

these illustrations.   738 

Discussion 739 

There are some differences between the different methods used to select covariates and whether 740 

density dependence is included. The best density dependent model is 6.56 AICc units better than the 741 

best density independent model and the results (Figures 11 and 12) suggest that the density 742 

dependence curve for survival from sub-adults to adults is supported by several data points. 743 

Unfortunately, the index for the adult abundance is split and the high density points are mostly in the 744 

early index, making interpreting the relationship from the empirical data difficult. Maunder and Deriso 745 

(2011) found evidence for density dependence between juveniles and adults, but this corresponds to 746 

the surveys used in this model for survival between juveniles and sub-adults. 747 

The inclusion of density dependence is most influential on the projections. Given the low current levels 748 

of abundance, the survival rate under average conditions in the model with density dependence is very 749 

high causing the population to rapidly increase in size. However, under no density dependence the 750 

population continues to decline.    751 

There is a large amount of uncertainty in the projections even though the uncertainty about the future 752 

values of the covariates was not included. This is because of the large amount of unexplained temporal 753 

variation in survival for the different stages and suggests that it is not possible to predict the future 754 

abundance under different management actions with any certainty. However, it may be possible to 755 

evaluate the relative effects of the different management actions and this needs to be further 756 

investigated. 757 

The projections did not consider the correlation among the covariates. Management action designed to 758 

influence one covariate is likely to influence some or even all of the other covariates. This correlation 759 

among covariates could be modelled through the approach that treats the covariates as random effects 760 

and fit to the input covariate data. The covariates could be modelled as a multivariate time series 761 
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process. This approach might be best conducted outside the GLCM to estimate the multivariate 762 

distribution to avoid convergence issues. 763 

The selection of the density dependence form and stage was conducted using a model with no 764 

covariates. It is possible that including covariates might change the support for the form or stages that 765 

have density dependence. Convergence issues were found using a model with all the covariates. Testing 766 

the density dependence using a model with he selected covariates and/or some iterative modelling 767 

approach between selecting covariates and selecting density dependence should be considered to 768 

determine the sensitivity of the results to the approach.      769 

The two at a time AICc model average covariate selection procedure selected the same covariates as the 770 

forward stepwise model selection for the density independent model and encountered convergence 771 

issues with the density dependent model. It is possible that removing some covariates from the density 772 

dependent model may improve the convergence (note the all covariate model had difficulty estimating 773 

mating a process error and one of the covariate coefficients). The approach also selects covariates that 774 

have the wrong sign because including remaining covariates result in estimates with the right sign.  This 775 

model selection approach needs further investigation, but in this application supports the models 776 

selected. 777 
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Table 1. Differences between the M&D and Polansky et al. models. 794 

Characteristic M&D Polansky et al. This application 

Time frame 1972-2006 1995-2015 (1994 adults 
also included) 

1995-2015 

Stages 3 (larvae, juveniles, 
adults) 

4 (post larvae, juveniles, 
sub-adults, adults) 

4 (post larvae, 
juveniles, sub-
adults, adults) 

Stock-recruitment 
survival process variation 
(Adult to larvae survival) 

Lognormal Lognormal Lognormal 

Other survival process 
variation 

Lognormal Logit-normal Lognormal 

Density dependence Beverton-Holt, Ricker, or 
Deriso-Schnute 

None Beverton-Holt 
(Ricker and Deriso-
Schnute are also 
possible) 

Indices of abundance 3 (20mm, summer tow 
net, fall midwater tow) 

4 (20mm, summer tow 
net, fall midwater tow, 
spring Kodiak trawl, and 
spring midwater tow) 

4 (20mm, summer 
tow net, fall 
midwater tow, 
spring Kodiak trawl, 
and spring 
midwater tow) 

Catchability (survey bias) Catchability fixed at 1 
(assumes can’t estimate 
absolute abundance) 

Catchability fixed at one 
for 20mm and for spring 
Kodiak trawl (2001 and 
later), estimated for 
other surveys and years, 
but spring midwater 
tow is assumed equal to 
the fall midwater tow.      

Catchability fixed at 
one for 20mm and 
for spring Kodiak 
trawl (2001 and 
later), estimated 
for other surveys 
and years, but 
spring midwater 
tow is assumed 
equal to the fall 
midwater tow.  
However, this had 
confounded 
parameters, so just 
estimated the 
catchability for 
Adult spring 
midwater tow     

Observation error Normal with known 
standard deviation that 
varies by year 

Lognormal with known 
CV that varies by year 
(also investigated 
estimating CV scaler) 

Lognormal with 
known CV that 
varies by year 
(other options 
available) 

Inference framework Frequentist state-space Bayesian state-space Frequentist state-
space 
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Model selection Two at a time selection 
based on model 
averaging of AICC 
weights (density 
dependence model 
selection was based on 
full factorial without 
covariates)  

Include all covariates 
and evaluate Bayesian 
interval coverage of 
zero  

Empirical 
correlations, full 
covariate model, 
forward stepwize 
selection, two at a 
time selection 
based on model 
averaging of AICC 
weights 

Covariates Various (see Table of 
M&D) 

Various (see Table 2 and 
Table C1 of Polansky et 
al.) 

Various (see Table 2 
and Table C1 of 
Polansky et al.) 

  795 

 796 
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Table 2. Results of the alternative model selection procedures. “Empirical” is the correlation between the log of the ratio of the appropriate 

indices and the covariate. Green represents a covariate that is “selected”. Red represents a covariate that has the wrong sign. The value in the 

empirical column is the correlation coefficient. The value in the forward and two at a time AICc weights model average columns is the order in 

which the covariate was selected. The two covariates at a time AICc model averaging procedure selects some covariates with the wrong sign as 

they can be the right sign when combined with remaining covariates, only the covariates included in the models that had an AICc within 4 units 

of the best model are listed here (none of these had the wrong sign).   

Covariate Stage Covariate Lagged Sign Empirical 80% Forward 
Two at a 
time BH JtoSA  

1 PLsurvival Outflow_Jun0Aug0 no pos 0.5   1 3 1 

2 PLsurvival Secchi_mean_Jun0Aug0 no neg -0.46  8  9 

3 PLsurvival Temperature_mean_Jun0Aug0 no neg -0.47  4 4 3 

4 PLsurvival ISS_Jun0Aug0 no neg -0.45  14  11 

5 PLsurvival TriGoby_Jun0Aug0 no neg -0.58       

6 Jsurvival X2_Sep0Oct0 no neg 0        

7 Jsurvival Secchi_mean_Sep0Nov0 no neg -0.14   6 6 5 

8 Jsurvival Temperature_mean_Sep0Nov0 no both 0.27   7 7 6 

9 Jsurvival ACM_BPUV_Sep0Nov0 no pos -0.07        

10 SAsurvival Outflow_Dec0Feb1 no pos -0.25   15    

11 SAsurvival OMR_Dec0Mar1 no pos 0.64   3 1   

12 SAsurvival SouthSecchi_mean_Dec0Mar1 no pos 0.58   2 2 7 

13 SAsurvival Temperature_mean_Dec0Feb1 no both -0.07  5 5 4 

14 SAsurvival ACM_BPUV_Dec0Feb1 no pos 0.43  12    

15 SAsurvival SBAge1Plus_Dec0Dec0 no neg -0.21  11    

16 Recruitment Outflow_Mar0May0 yes pos 0.28        

17 Recruitment Secchi_mean_Mar0May0 yes neg 0.02   3  8 

18 Recruitment Temperature_mean_Mar0May0 yes neg -0.39   9    

19 Recruitment ACM_BPUV_Mar0May0 yes pos -0.09   10  10 

20 Recruitment NJ_BPUV_Mar0May0 yes pos -0.34        

21 Recruitment TFS_Mar0May0 yes neg -0.14        

22 Recruitment ISS_Mar0May0 yes neg 0.55        

23 Recruitment TriGoby_Mar0May0 yes neg -0.54        

24 Recruitment X2_lag yes neg -0.13  13  2 
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Table 3. Results of each stage of the forward stepwise regression for the model without density dependence. The yellow shaded values are the 

covariates included up to the step that is within 4 AICC units of the best AICC model. 

 

Hypothesis nlnL npar AIC ndata AICC beta dif 

0 105.2132 10 230.4265 84 233.4402 NA  
1 101.8838 11 225.7677 84 229.4343 0.465516 10.33267 

12 99.15309 12 222.3062 84 226.7005 0.405453 7.598883 

11 93.95083 13 213.9017 84 219.1017 0.434852 0 

3 92.60051 14 213.201 84 219.288 -0.29652 0.186309 

13 91.62269 15 213.2454 84 220.3042 -0.16186 1.202545 

7 90.91235 16 213.8247 84 221.9441 -0.25409 2.842433 

8 89.08489 17 212.1698 84 221.4425 0.45952 2.340837 

2 88.78198 18 213.564 84 224.087 -0.13447 4.985381 

18 88.55078 19 215.1016 84 226.9766 -0.09286 7.874897 

19 88.35094 20 216.7019 84 230.0352 0.087099 10.93356 

15 88.18182 21 218.3636 84 233.2669 -0.07572 14.1652 

14 87.87021 22 219.7404 84 236.3306 0.109267 17.22892 

24 87.80026 23 221.6005 84 240.0005 -0.05326 20.89885 

4 87.7897 24 223.5794 84 243.9184 -0.03363 24.81672 

10 87.78969 25 225.5794 84 247.9932 0.001003 28.89152 
 

 

Table 4. Results of each stage of the forwards stepwise regression for the model with density dependence using the Beverton-Holt model for 

survival from adult to post-Larvae (stock-recruitment) and the Beverton-Holt model for survival from Juveniles to sub-Adults. The yellow shaded 

values are the covariates included up to the step that is within 4 AICC units of the best AICC model. 
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Hypothesis nlnL npar AIC ndata AICC beta dif 

0 96.02281 11 214.0456 84 217.7123 NA 5.17467 

1 92.51946 12 209.0389 84 213.4333 0.491709 0.895651 

24 90.66881 13 207.3376 84 212.5376 -0.27322 0 

3 89.34835 14 206.6967 84 212.7837 -0.29939 0.246028 

13 87.98183 15 205.9637 84 213.0225 0.178036 0.484859 

7 86.86237 16 205.7247 84 213.8442 -0.34099 1.306527 

8 85.96191 17 205.9238 84 215.1966 0.347114 2.658932 

12 85.00267 18 206.0053 84 216.5284 0.204876 3.990789 

17 84.16867 19 206.3373 84 218.2123 -0.20036 5.674718 

2 83.868 20 207.736 84 221.0693 -0.14179 8.531711 

19 83.86383 21 209.7277 84 224.6309 0.012864 12.09326 

4 83.85977 22 211.7195 84 228.3097 -0.02171 15.77208 
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Figure 1. Correlation between log(J/PL) and the covariates for PL survival 
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Figure 2. Correlation between log(PA/J) and the covariates for J survival 
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Figure 3. Correlation between log(A/PA) and the covariates for PA survival. Only data from 2001??? is 

used because of the change in the gear used for the adult survey. Covariates labeled 1-6 are covariates 

10-15. 
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Figure 4. Correlation between log(PL/A) and the covariates for A survival/stock-recruitment relationship. 

Only data from 2001 are used because of the change in the gear used for the adult survey. The data for 

the juveniles was lagged appropriately. Covariates labeled 1-9 are covariates 16-24. 
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Figure 5. Fit to the survey data without covariates and two catchability parameters estimated. All 

surveys are plotted in a single figure to quickly check for any obvious misfits. 
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Figure 6. Fit to the survey data without covariates and only one catchability parameter is estimated. All 

surveys are plotted in a single figure to quickly check for any obvious misfits. 
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Figure 7. Fit to the survey data including all covariates and only one catchability parameter is estimated. 

All surveys are plotted in a single figure to quickly check for any obvious misfits. 
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Figure 8. Estimates of the covariate coefficients and their approximate 80% confidence intervals (+-

1.282 se) from a model that includes all the covariates and estimates only one catchability (survey bias).   
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Figure 9. Estimates of the covariate coefficients and their approximate 80% confidence intervals (+-

1.282 se) from a model that includes only the covariates selected in the forward model selection 

procedure. The numbering of the models is related to the models included (1,3,7,8,11,12,13).  
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Figure 10. Estimates of the covariate coefficients and their approximate 80% confidence intervals (+-

1.282 se) from a model that includes only the covariates selected in the forward model selection 

procedure using the model with density dependence. The numbering of the models is related to the 

models included (1, 3, 7, 8, 11, 12, 15, 17, 24).  
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Figure 11. The density dependence function from juveniles to sub-adults estimated in a model without 

covariates. The circles are the density dependent function, the crosses are the estimated abundance, 

the x’s are the survey data, and the line is density independence.  
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Figure 12. The density dependence function from juveniles to sub-adults estimated in a model with 

covariates. The circles are the density dependent function, the crosses are the estimated abundance, 

the x’s are the survey data, and the line is density independence. 
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Figure 13. Ten year projections and approximate 95% confidence intervals from a model that includes 

only the covariates selected in the forward model selection procedure using the model without density 

dependence. The circles are with “mean” values for the covariates (set to zero) and the lines are with 

the outflow covariate effect doubled (covariate = ln(2)). The panels are the 4 stages.  
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Figure 14. Ten year projections and approximate 95% confidence intervals from a model that includes 

only the covariates selected in the forward model selection procedure using the model with density 

dependence. The circles are with “mean” values for the covariates (set to zero) and the lines are with 

the outflow covariate effect doubled (covariate = ln(2)). The panels are the 4 stages.  
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Figure 15. Illustration of the temporal trend in the covariate effect (exp(beta*X)) for the model without 

density dependence. The thick black line is the product of all the effects. The unexplained variation (the 

process error) is not shown.  
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Figure 16. Illustration of the temporal trend in the covariate effect (exp(beta*X)) for the model with 

density dependence. The thick black line is the product of all the effects. The unexplained variation (the 

process error) is not shown. The effects of the covariates will also be impacted by the density 

dependence, which is not taken into consideration in this figure. (note the colors differ somewhat with 

those used for figure 15) 

 


