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1. BACKGROUND

This project was initiated under the auspices of the Collaborative Science and Adaptive
Management Program (CSAMP), which is an overarching entity with the following four-tiered
organizational structure:

1.) Policy Group consisting of agency directors and top-level executives from the entities that
created CSAMP;

2.) CAMT made up of managers and staff scientists that serve at the direction of the Policy
Group;

3.) Scoping Teams created on an as-needed basis to scope specific science studies; and

4.) Investigators contracted to conduct studies.

CSAMP was created following a decision by the United States District Court for the Eastern District
of California in April, 2013. The decision, titled Memorandum Decision and Order Regarding
Motion to Extend Remand Schedule” (Court Order), was issued in response to a motion filed to
extend the court-ordered remand schedule for completing revisions to salmonid and delta smelt
Biological Opinions (BiOps). The motion was filed by the U.S. Bureau of Reclamation, U.S. Fish
and Wildlife Service, National Marine Fisheries Service, and the California Department of Water
Resources, and the Court Order allowed additional time for those parties to develop a proposed
robust science and adaptive management program, through collaboration among scientists, experts
from the Public Water Agencies (PWAs), and the non-governmental organization (NGO)
community with the intent to inform the management actions incorporated into the existing BiOps
and consider alternative management actions. In 2015, the Ninth Circuit reversed the Court’s
decision with respect to the smelt and salmonid BiOps and issued a final judgment, thereby ending
the Court Order. Following this action, all parties agreed to continue the CSAMP to promote the
collaborative development of scientific information to inform sound decision-making in the future.
In July, 2013, the CAMT mutually agreed on the following mission statement:

The Collaborative Adaptive Management Team (CAMT) will work, with a
sense of urgency, to develop a robust science and adaptive management
program that will inform both the implementation of the current
Biological Opinions, including interim operations; and the development of
revised Biological Opinions.

Over the past few years, CAMT has continued to focus on implementation of a work plan that

included four areas of scientific investigation:

1.) Improved application of delta smelt survey data;

2.) Old and Middle River (OMR) flow management and entrainment of delta smelt;
3.) Fall outflow management of delta smelt; and

4.) South Delta salmonid survival.



This project falls under the first focal area and is designed to broadly address the following

management question:

Are there biases in the existing delta smelt survey data, and if so, how should those
survey data be utilized?

The term biases in the above management question can elicit a wide array of responses and
interpretations. However, in the context of this project, that term is viewed in relation to presently
unexplored structural aspects of extant survey data, and how they may affect inferences derived from
those data about the delta smelt population. It should be noted that the fish surveys in the San
Francisco-San Joaquin Delta are some of the longest running sampling programs in the United
States and they undoubtedly contain a great deal of valuable information. Accordingly, the core
scientific issue of this project pertains more to the notion of what else can be learned from delta
smelt survey data (advancing the so-called scientific enterprise) rather than trying to demonstrate
that data are somehow poor or lack utility.

Accordingly, the analytical strategy adopted with this project is to formally apply statistical
models to extant delta smelt survey data, with particular attention directed at elucidating the effects
of key environmental variables on survey catchability, thereby leading to estimates of delta smelt
occurrence and relative abundance in relation to those environmental variables. However, the
robustness of the analyses underpinning estimation and statistical inference depends on meeting the
assumptions of analytical methods, so the characteristics of delta smelt survey data need to be fully
explored and, where appropriate and possible, analytical procedures need to be modified to account
for structural elements of the underlying data.

2. INTRODUCTION

Aquatic fish and invertebrate populations are routinely surveyed by scientists using a variety
of sampling techniques such as trawls, dredges, gillnets, and traps (Kimura and Somerton 2006).
With all of these sampling methods, the primary goal of a survey is to obtain representative data that
allow estimation of key population quantities for use in management. When available, survey data
are often considered vital components of analytical investigations into the biology, ecology, and
population status of natural aquatic populations.

Fish survey data are often analyzed to estimate indices of relative abundance in relation to a
variety of covariates. Indices are commonly expressed over temporal domains such as years or
seasons for population trend information and use in stock assessment modeling (Hilborn and
Walters 1992, Quinn and Deriso 1999). Relative abundance can be characterized in relation to
environmental regimes such as temperature or salinity to understand aspects of habitat preferences
(Buchheister et al. 2013). Spatially, indices displayed over longitude/latitude or broader areal
definitions aid inferences about community structure and/or species distributions within an
ecosystem (Malak et al 2014).

An underlying assumption associated with the interpretation of abundance indices is that
they proportionally reflect changes in the true population abundance according to the following

expression:



C =qEN (1)

where E is survey effort, Vis total population abundance, and ¢ is the catchability coefficient defined
as the fraction of the population captured with one unit of effort (Ricker 1975). Equation (1) can
be re-arranged to yield the following key relationship:

== CPUE = qN 2
which implies that catch-per-unit-effort (CPUE) is proportional to population abundance provided
¢g remains constant. However, in practice, the catchability coefficient can vary depending on when,
where, and how survey operations are conducted. In situations when ¢ is not constant,
interpretation of survey data becomes difficult because patterns of relative abundance are
confounded by changes in both catchability and population size. As a result, survey data are often
analyzed using statistical models to adjust for the effects of factors influencing catchability, which is a
process often referred to as ‘catch-effort standardization” (Maunder and Punt 2004).

Early attempts to standardize catch and effort data were applied to fishery-dependent,
commercial landings information and focused on estimating ‘fishing power’ coefficients. Such
coefficients are defined as fishing efficiencies of the various vessels within a fleet relative to that of a
standard fishing vessel (Beverton and Holt 1957). Although numerous approaches for estimating
efficiency coefficients have been developed, they cannot be easily generalized to account for multiple
factors affecting catchability nor can they handle typical survey situations that rely on a single vessel.
More recently, statistical models such as generalized linear (GLM, McCullagh and Nelder 1989) and
additive (GAM, Hastie et al. 2001, Wood 2006) models have been used to standardize CPUE data,
including those collected by surveys.

GLMs, GAMs, and their extensions have been applied extensively to fishery-independent
and -dependent CPUE over the past three decades primarily to develop standardized time-series of
yearly relative abundance for inputs to stock assessment models (Maunder et al. 2004). However,
when sufficient data are available, these models can also yield estimated relationships of standardized
relative abundance with other covariates of interest, particularly those of known or hypothesized
ecological significance. Additionally, model-based treatment of survey CPUE data can provide
insight into the effects of sampling procedures on catchability, which in turn, can be used to address
a variety of survey design questions (Peel et al. 2013).

Fish survey data span several decades in many major freshwater, estuarine, and coastal
ecosystems within the United States. Among estuaries, the San Francisco Bay is the largest on the
west coast of the United States and systematic fish sampling was initiated in the 1960s. Freshwater
is supplied to the bay primarily from the Sacramento and San Joaquin rivers, which converge to
form a complex mosaic of tidal freshwater areas known collectively as the Sacramento-San Joaquin
Delta (referred herein as the Delta). Over the past century, the Delta has experienced considerable
anthropogenic changes in the form of lost wetlands (Atwater et al. 1979), sediment loading resulting
from large-scale hydraulic mining (Schoellhamer 2011), introduction of invasive and nonindigenous
species (Cohen and Carlton 1998), input of contaminants (Connor et al. 2007), and decreased
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chlorophyll-z (Alpine and Cloern 1992) and zooplankton densities (Orsi and Mecum 1996).
Analyses of fish survey data by the California Department of Fish and Wildlife (CDFW) have shown
long-term declining patterns in abundance indices for several fish species, particularly since the early
2000s (Sommer et al. 2007). These patterns along with complementary analyses of other Delta fish
and ecosystem attributes have collectively supported the conclusion that overall abundance of several
pelagic fishes is currently quite low. However, specific to the available survey data underpinning fish
population status determinations, routine analyses and estimation of relative abundance indices have
not utilized methods that standardize data for potential changes in catchability resulting from
variation in the timing and location of sampling activities.

Despite the wealth of available survey data for the Delta, few studies have analyzed ‘raw’
survey observations to make inferences about the biology and ecology of resident fish species. Feyrer
et al. (2007) applied GAMs to quantify occurrences of three fish species in relation to water quality
variables, and Feyrer et al. (2011) updated and extended that analysis specifically for delta smelt
(Hypomesus transpacificus). These studies provide important insight into how environmental
covariates affect survey capture probabilities of several Delta fish species. Latour (2016) applied
zero-inflated GLMs to standardize CPUE data and assess patterns with respect to a suite of
covariates across multiple temporal scales, and results revealed significant annual, seasonal, areal, and
water clarity (Secchi) effects on CPUE for four fish species.

The aforementioned studies applied statistical models formulated to match the data
structures being analyzed and overcome the often limiting assumptions of traditional regression
analysis. In particular, the use of binomial GAMs to model capture probabilities alleviated the need
for normally distributed response variables, variance homogeneity, and linearity among predictors.
Application of zero-inflated GLM:s also relaxed several classic regression assumptions (although
linearity among predictors was required) and provided a synthetic treatment of excess zeros present
in the survey data for many Delta fish species. However, the GAMs and GLMs used still required
the assumption of independence among survey observations. Dependencies among observations can
manifest in time (temporal or serial autocorrelation) or space (spatial autocorrelation) and failure to
account for them in statistical modeling frameworks can lead to poor model fit, biased parameter
estimates (effects of covariates influencing catchability) and unrealistic estimated standard errors of
parameters used for statistical inference (Nishida and Chen 2004, Dormann et al. 2007).

Accordingly, the objectives of this study were three-fold: 1) build on analyses by Feyrer et al.
(2007, 2011) and Latour (2016) by standardizing delta smelt CPUE data from two fish surveys by
incorporating a broad suite of environmental and sampling covariates, 2) evaluate the presence of
temporal and spatial autocorrelation among observations in each data set, and if present, modify
modeling frameworks to reflect an appropriate autocorrelative structure, and 3) provide statistically
derived relationships among delta smelt relative abundance and measured covariates that both
advance the scientific understanding of how delta smelt are affected by environmental attributes and

serve future statistical and mechanistic modeling studies.



3. METHODS
3.1 Delta Smelt

The delta smelt is a member of the family Osmeridae and genus Hypomesus. This species is
endemic to the Delta where it inhabits primarily low-salinity and freshwater habitats (Moyle et al.
1992, Bennett 2005). Delta smelt largely feed on various copepods and attain maximum sizes of
approximately 60-70mm standard length (SL). Peak delta smelt spawning occurs in river channels
of freshwater habitats during spring months and eggs and larvae are transported downstream into the
saltwater-freshwater mixing zone. Delta smelt are semi-anadromous and semelparous with a
maximum age of approximately one year (Bennett 2005). Relative to related smelt species, overall
fecundity of delta smelt is low, which is an unusual life history characteristic for a primarily annual
species, and one that leads to low productivity and high vulnerability to population depletion.
Following apparent declines in abundance during the 1980s, the delta smelt was listed as threatened
under both the U.S. Endangered Species Act (ESA) the California Endangered Species Act (CESA)
in 1993, and listed as endangered under the CESA in 2010.

3.2 Data Sources

Datasets from two fishery-independent surveys were analyzed for the project. The first is the
longstanding Fall Midwater Trawl (FMWT) survey, which the California Department of Fish and
Wildlife (CDFW) has been conducting nearly continuously since 1967 (Stevens and Miller 1983;
see http://www.dfg.ca.gov/delta/projects.asp?ProjectiD=FMWT for additional details). The FMWT
survey was initiated to measure the relative abundance of age-0 striped bass (Morone saxatilis),

however, survey data have been used to infer patterns in relative abundance of a variety of species,
including juvenile and adult delta smelt (Kimmerer 2002; Sommer et al. 2007). Monthly cruises are
conducted from September to December and the number of tows each month has increased from
approximately 75-80 during the early years of the program to > 100 in more recent years. The
survey follows a stratified fixed station design such that sampling occurs at approximately the same
location within predefined regional strata (17 areas excluding areas 2, 6, and 9 per the CDFW’s
protocol). Sampling intensity is related to water volume in each regional stratum such that samples
are taken every 10,000 acre feet for areas 1-11 and every 20,000 acre feet for areas 12-17; Fig. 1). At
each sampling location, a 12 minute oblique tow is made from near bottom to the surface using a
3.7 m X 3.7 m square midwater trawl with variable mesh in the body and a 1.3 c¢m stretch mesh cod
end. Vessel speed over ground during tows can be variable since sampling procedures are designed
to maintain a constant cable angle throughout the tow. Each catch is sorted, enumerated by species,
and station-specific measurements of surface water temperature ('C), electrical conductivity (specific
conductance, uS/cm), Secchi depth (m), overall depth (ft), tidal stage, tow direction with respect to
tide, and water volume sampled (m?, beginning in 1985) are recorded.

The second survey is the more recently initiated Spring Kodiak Trawl (SKT), which the
CDFW has been conducting since 2002 specifically to measure the relative abundance of adult delta
smelt during the spawning season (Bennett 2005; see
hteps://www.wildlife.ca.gov/Conservation/Delta/Spring-Kodiak-Trawl for additional details).

Monthly cruises are conducted from January to May during which 40 tows are made following a


http://www.dfg.ca.gov/delta/projects.asp?ProjectID=FMWT
https://www.wildlife.ca.gov/Conservation/Delta/Spring-Kodiak-Trawl

fixed survey design. At each sampling location, a 10 minute surface tow is made usinga 7.6 m X 1.8
m trawl net with variable mesh in the body and a 64 mm stretch mesh cod end. The net is towed by
two boats to maintain spread and mouth opening. Each catch is sorted, enumerated by species, and
station-specific measurements of surface water temperature (‘C), electrical conductivity (specific
conductance, uS/cm), Secchi depth (m), overall depth (ft), tidal stage, tow direction with respect to
tide, and water volume sampled (m?) are recorded.

3.3 Data Filtering

Prior to conducting formal analyses, exploration of the delta smelt data from each survey was
conducted by generating basic summary statistics and plots of candidate response variables (catch
and CPUE defined as catch-per-volume-sampled) over the observed domains of potential temporal,
spatial, and environmental covariates. These initial explorations lead to the following decisions.

3.3.1 Fall Midwater Trawl

1.) Several of the covariates presently measured during towing operations, namely, hour of
sampling (time-of-day), tow direction with respect to tide, depth, and tidal stage were not
recorded during the early years of the survey. The first year in the time-series with
measurements of all of these covariates was 1985, and because of hypotheses regarding their
potential to affect survey catchability, data spanning the years 1985-2015 were analyzed.
Water volume sampled by the trawl net was also not quantified until 1985, so the ability to
adjust for variation among tow volumes further supported the chosen start year.

2.) Only data collected from surveys in September-December were analyzed to maintain
consistency with index months defined by CDFW.

3.) Given that several areas contained very few nonzero catches, only data from areas 11-16 were
analyzed (Fig. 1A, 2, Latour 2016).

4.) Tows with missing values of potential covariates were omitted, which corresponded to 5.1%
of the tows remaining after applying the filters specified in points 2, 3 above.

5.) The covariate Tide was collapsed into three levels: slack, ebb, and flood, which amounted to
eliminating the distinction between high slack and low slack tide. Relative to flood and ebb
tidal conditions, the number of observations made during slack tide was quite low, so
defining a single slack tide category aided sample size.

6.) Since the sampling design is based on fixed stations, there is no variation in the
latitude/longitude coordinates of sampling locations across months and years. Therefore, to
aid analyses aimed at addressing spatial autocorrelation, the spatial coordinates of sampling
locations were randomly jittered slightly to make them unique. Operationally in the field,
this small added spatial variation is potentially realistic since it can be difficult for the survey
vessel to maintain the exact starting location of tows for a given station over months and

years.

3.3.2 Spring Kodiak Trawl
1.) Observations associated with supplemental surveys were excluded from analysis because they
were designed to intensively sample areas of highest delta smelt abundances (informed from



standard monthly surveys) for estimation of proportions of fish in pre-spawning, spawning,
and spent reproductive stages.

2.) Tows with missing values of potential covariates were omitted, which corresponded to 1.3%
of the tows remaining after applying the filter specified in point 1 above.

3.) Tow volume was calculated as the water filtered through the net (m®) and was not corrected
by the calibration factor for the flow meter (unknown to author). In cases where tow volume
measurements were negative or zero (2.1% of the tows), the overall mean of the positive tow
volumes was assigned.

4.) The covariate Tide was collapsed into three levels: slack, ebb, and flood — see point 5 from
FMWT section.

5.) Spatial coordinates of sampling locations were randomly jittered slightly — see point 6 from

FMWT section.

3.4 Statistical Modeling

3.4.1 Analytical Framework

Following data preparation, it was evident that each filtered survey data set contained high
frequencies of zero observations. The proportion of positive observations by year, defined as capture
of at least one delta smelt, ranged between 0.02 and 0.41 for the FMWT and 0.14 and 0.53 for the
SKT (Figs. 3 A, B). Mean proportion of positive tows across years was 0.17 and 0.29 for the
FMWT and SKT surveys, respectively. When applying statistical models that require specification
of an underlying probability distribution for the response variable, zero observations can be
challenging, particularly if they are common in data sets. Two-part zero-altered and mixture zero-
inflated distributions (Zuur et al. 2009, 2012) were explored but ultimately not used because
currently available software does not easily permit fitting models that can accommodate
autocorrelated response data. Therefore, a ‘A-distribution’ was assumed (referred herein as delta-
model), which is a two-part distribution that specifies (i) the probability of obtaining a non-zero
observation (encounter or capture probability), and (ii) a conditional distribution for the positive
observations (Aitchison 1955). In effect, the encounter probability and the positive observations are
modeled separately. Delta-distributions have also been termed hurdle distributions (Cragg 1971)
because a hurdle needs to be crossed to obtain a positive observation.

The general form of a delta-model model is:

_ _ p y+0
Pr(¥ =y) = {P f) otherwise ®)

where p is represents the encounter probability and f () is probability distribution of positive
observations. The parameter p was modeled with the binomial distribution to accommodate the
presence/absence of delta smelt in the FMWT and SKT surveys, and diagnostic plots of preliminary
model fits suggested that a lognormal distribution was appropriate for f(y). Therefore, the assumed
distribution for both survey data sets was a delta-lognormal, which has been used extensively for the

analysis of fisheries data (Pennington 1983, Lo et al, 1992, Stéfansson 1996, Dick 2004, Fletcher



2008). All statistical analyses were conducted using the software package R (R Core Development
Team 2015).

3.4.2 Covariates

Since both surveys collect information on the same covariates, a single initial candidate set of
covariates was defined for analysis of both survey data sets: Year (categorical), Month (categorical),
Area (categorical, FMWT only), Tide (categorical), Hour of sampling (continuous), surface
Temperature (continuous), surface Conductance (continuous), Secchi depth (continuous),
TowDirection (continuous), and overall Depth (continuous). Scatter plots of covariate matrices
(SPLOMs), estimated correlations among covariates, and variance inflation factors (VIF) associated
with preliminary GLM fits suggested collinearity among Month/Temperature and
Tide/TowDirection in both data sets, and Area/EC in the FMWT data. Centering (subtract mean)
and standardizing (subtract mean and divide by standard deviation) the covariates did not reduce
collinearity, so Month, Area, and TowDirection were eliminated in an effort to retain environmental
covariates. Given the finalized set of seven predictor covariates, eight parameterizations were
analyzed within the binomial and lognormal components of both data sets (Table 1). All models
contained Year because of the need to estimate an annual time-series of relative abundance, Temp
and EC as proxies to control for seasonal and spatial patterns, and Secchi because it has been shown
to be an important covariate in previous analyses of delta smelt encounter probabilities (Feyrer et al.
2007, 2011) and relative abundance (Latour 2016). Various combinations of the remaining
covariates were included to explore their importance. For binomial models, the natural logarithm of
TowVolume was used as an offset variable, and CPUE was defined as catch-per-m?® for the
lognormal models. All continuous covariates were standardized prior to analysis to facilitate
comparisons among estimated effects (Schielzeth 2010).

3.4.3 Baseline Models

As a first step in the analysis of each data set, binomial and lognormal GLMs and GAMs
were fitted as baseline models to provide insight regarding model performance and coherence with
required analytical assumptions. These models also importantly facilitate comparisons of parameter
estimates and model prediction with those designed to accommodate temporal and spatial
autocorrelation. Formally, a GLM specifies a linear relationship between the expected value of the
response variable and a set of covariates:

g(EW)) = XB (4)

where y is the vector of observations of the response variable, X is the fixed effects model matrix
containing observations of the covariates, [ is the vector of coefficients, and g is the link function
which is differentiable and monotonic. GAMs are extensions of GLMs that replace the linear
predictor by an additive predictor:

JEM) =XB+30_;5(%) (5)



where s; is a smoothing function such as a spline or a loess smoother that provides a partially non-
parametric aspect to the model. For normally distributed data, the error covariance matrix of a
GLM or GAM is given by e~N(0,d2I), where I is the identity matrix. The R library ‘mgcv’ was
accessed to fit GAMs.

3.4.4 Temporal Autocorrelation

Fish surveys that follow fixed station designs, as in the case of the FMWT and SKT surveys,
can be generally categorized as longitudinal studies since the same locations (or approximate
locations) are sampled repeatedly through time. Longitudinal data have several unique features,
most notably that measurements taken at the same sampling locations over time may be related or
correlated due to within-site variation. That is, some sites may be located in areas with favorable
habitat conditions such that surveys catches are consistently high, while others may be in areas with
unfavorable habitat conditions and survey catches are regularly low. If survey measurements through
time at the fixed stations are appreciably correlated, then the amount of true information in a survey
data set will be misrepresented and analyses of those data will be flawed.

In the context of statistical models such as GLMs and GAMs, the assumption of
independence among observations can be translated to imply independence among residuals
(defined as &;,i = 1, ...,n). Formally, this idea is expressed as:

1 ifs=t

cor(e,, &) = { .
(&5, &) 0 otherwise

which indicates that the correlation among pairs of residuals is zero. However, when observations
are not temporally independent, then the correlation among residuals at different time points is
nonzero and can be modeled with a correlation function (denoted by h):

cor(e. &,) = 1 ifs=t

77 \h(es, &, p) otherwise
where h takes on values between -1 and 1 and p represents the correlation between residuals s and t
that is estimated from the data. The function h can assume different structural forms depending on
hypotheses about the nature of autocorrelative process.

3.4.4.1 Binomial Component
Two modeling approaches were applied to FMWT and SKT survey data to explore
temporally autocorrelated binomial errors, namely generalized estimating equations (GEE) and

generalized linear mixed models (GLMM).

1.) Generalized Estimating Equations — The GEE approach is commonly used to analyze data where
responses are measured repeatedly on the same sampling units, often denoted as clusters (Liang and

Zeger 1986). To formally describe GEE, first note that equation (4) can be expressed as: E(y) =
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p = g~*(XPB), and parameter estimates of a traditional GLM are obtained by minimizing the
gradient of the log-likelihood function (score equation), which is given by:

DTV (y—g t(XB)) =0 (6)

where D7is the transposed matrix of partial derivatives, D = d(g~1(XB))/3B, and V is the
variance-covariance matrix. However, as noted above, for GEEs the data are split up into m clusters
such that the variance-covariance matrix has block diagonal form which leads to the following

transformed score equation:

S Df Vit (v - 971 (X;8)) = 0 @)

where j indexes the clusters and the matrix V' is augmented to take into account non-independent
observations: V = ¢pAY2RAY?2, where A contains the GLM variances, ¢ is the dispersion parameter
to adjust for overdispersion (set to 1 for binomial data), and R is an additional matrix that
incorporates the correlation structure among residuals (Carl and Kuhn 2007, Dormann et al. 2007).

GEE:s are sometimes referred to as population average (so called PA interpretation) or
marginal models because they provide an average response for observations sharing the same
covariates in relation to those covariates. That is, for each one-unit increase in a covariate across the
population, GEEs indicate how much the average response would change. It has been noted that
GEE:s are best suited for parameterization rather than prediction (Augustin et al. 2005).

For the GEE analysis, the clusters were defined as the survey sampling locations (station) and
a two-step procedure was adopted. First, model fits of the saturated parameterization (all seven
covariates included) with different correlation structures for the residuals were compared. The

specific correlation structures considered were:

Exchangeable: cor(es, &) = {;1) cl)f'dsle:rV\t/ise
. (1 ifs=t

Auto-regressive first order (AR1): cor(es, &) = {pls—tl otherwise

Independence cor(eg, &) = {(1) (l)ftfle=rV\tlise

Exchangeable assumes the correlation among residuals is the same regardless of the length of time
between observations, AR1 assumes that the correlation among residuals decreases as a function time
between observations, and independence assumes there is no correlation among residuals and is
typically explored as a reference to determine if more complex structures are warranted (such a
model is equivalent to GLM). Once the appropriate correlation structure was identified for each
survey data set (note that GEE is robust to modest misspecification of the correlation structure given
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large sample sizes), the second step involved fitting the eight aforementioned main effect covariate
combinations. The R library ‘geepack’ was accessed from model fitting.

2.) Generalized Linear Mixed Models — An alternative approach that can be used for temporally
correlated data is GLMMs (Bolker et al. 2009). These models are extensions of GLMs in which the
linear predictor contains both fixed and random effects. Formally, GLMMs are defined as:

9g(EW)) =XB +Zb (8)

where Z is the model matrix for the random effects, b is vector of random effects, other model terms
are the same as defined above, and €é~N(0,%) , b~N(0, D), with D being symmetric and positive-
definite.

In general, mixed effects models assume characteristics of sampled subjects (defined as
random effects) induce correlation among repeated measurements. However, it is important to
recognize that mixed model regression parameters reflect the expected response of a subject in
relation to the covariates associated with that subject (so called subject-specific (SS) interpretation).
As a result, GLMMs can be referred to as conditional mean models, where conditioning is
performed with respect to one or more random effects, as opposed to GEEs which are marginal
mean models that provide population averages over subjects or dependencies in the data.

For dichotomous response variables, a latent formulation of equation (8) can be written in

terms of a continuous response variable, y:
y=Xf+27Zb

where y is greater than zero for a ‘success’” response outcome and less than zero for ‘failure’ response
outcome. For GLMMs with a single random effect, it can be shown that the covariance matrix of y
is comprised of the variance of the residuals (62), which measures the within-subject variation, and
the variance of the random effect (62), which measures the between-subject heterogeneity not
captured by the fixed effects. Specifically, the diagonal elements of the covariance matrix are given
by 67 + a (variance) and the off-diagonal elements are given by 6/ (covariance), which illustrates
the induced correlation structure resulting from inclusion of the random effect. For binomial
regression using a logit link function, the within-subject variance a? equals 2 /3 (Hedeker and
Gibbons 2006). It follows then that the correlation between two observations is: p =

0%/ (a7 + m?/3), where p describes the proportion of the total response variation resulting from
between-subject variation and is a useful measure of the degree of within-subject dependence relative
to the total variation. Low values of p are the result of high within-subject variability (dissimilar
repeated observations) while high values of p are due to low within-subject variability (similar
repeated observations). A secondary use of p is in the calculation of the design effect, which
represents the extent to which the expected sampling error in a survey differs from the expected
sampling error under simple random sampling. Formally, the design effect is: degg = 1 + (n — 1) p,
where n is the number of observations per subject (or mean number if sampling is unbalanced) and,
in turn, aids calculation of effective sample size, defined as: Negfective = MN/degs, where M is the
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number of subjects (Zuur et al. 2009). Estimates of degr and Negfective can be helpful when
evaluating design characteristics of surveys.

For the GLMM analysis of presence-absence of delta smelt in both survey data sets, the eight
covariate fixed effects parameterizations were augmented to allow a random intercept for each
station. That is, station was defined as a random effect and the variation around the model intercept
for each station was assumed to be normally distributed with a certain variance. If that variance is
small, the differences among stations from the perspective of the model intercept are small, whereas a
large variance would be indicative of greater station-specific variation. The library ‘glmmADMB’
was accessed for model fitting (note, functions to fit GLMMs in the R libraries ‘Ime4’ and
‘glmmML’ were unsuccessful).

3.4.4.2 Lognormal Component

Three modeling approaches were applied to FMWT and SKT survey data to explore
temporally autocorrelated nonzero CPUE observations, namely, GEE, GLMMs, and generalized
additive mixed models (GAMMs).

1.) Generalized Estimating Equations — The GEE analysis for temporal autocorrelation of the
nonzero CPUE data followed the above description for temporal GEEs fitted to the presence-
absence data, with the only difference being specification of the normal rather than binomial
distribution.

2.) Generalized Linear Mixed Models — Since the underlying CPUE data is normally distributed (in
log space), the parameter 6 is estimated from the data. Accordingly, the possibility exists for
heterogeneous variance across the domain of observed CPUE values. Therefore, using the saturated
model parameterization, a variety of heterogeneous variance structures were explored in addition to
the standard model of constant variance. Heterogeneous variances were modeled assuming that the
heterogeneity depended on the mean, which led to exploration of the power-of-mean: var(g;) =
a2(f (X, 8))?%, exponential of the mean: var(g;) = o2exp{26f (X, 5)}, and constant plus power
of the mean: var(g;) = 02[6; + {f(X, $)}?%2] forms. Following determination of the appropriate
variance structure, the eight parameterizations were fitted. Maximum likelihood was used for

parameter estimation and the R library ‘nlme’ was accessed for model fitting.

3.) Generalized Additive Mixed Models — The final approach for addressing temporal
autocorrelation involved fitting additive mixed models (GAMM; Lin and Zhang 1999). GAMM:s
are extensions of GAMs and parallel GLMMs fitted to normally distributed data with a known
identity link function. The additive predictor in equation (5) is augmented to include both fixed

and random effects:

E() =XB +X5_ 5;(x) + Zb )
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with all terms as defined above, including the distributional assumptions about b and & (residual
variance). The GAMM analysis followed the same procedure outlined for the GLMMs where
station was the random effect modeled as an intercept and the appropriate structure of 0 was first
explored using the saturated model parameterization. Following identification of the appropriate
variance structure, the eight fixed effect covariate combinations were fitted. The R library ‘mgev’

was accessed for model fitting.

3.4.5 Spatial Autocorrelation

Fish surveys are generally designed with explicit considerations of allocation of sampling
locations across space. Spatial stratification variables are often defined to ensure sampling is
conducted over the full domain of the sampling frame, which in turn, aids population level
inferences based on analyses of survey data. However, depending on the habitat characteristics of the
study ecosystem and the dispersal tendencies of study species, observations collected different
sampling locations may be related (not independent) and thus spatially autocorrelated. Although the
causes of spatially correlated data are numerous, three common sources have been identified
(Dormann et al. 2007, Legendre and Legendre 2012): i) biological and ecological processes of
species are distance-related, ii) model misspecification that creates spatial dependency in, for
example, estimated residuals, and iii) failure to account for key, spatially structured covariates in
statistical models (Besag 1974). Not accounting for spatial autocorrelation in data or emergent
spatial dependencies associated with specific models structures may lead to biased parameter
estimates and incorrect statistical inferences. The primary approach used to explore spatial
autocorrelation in both the response data and subsequent model residuals from baseline models
fitted to both survey datasets was graphical analysis using correlograms (Box et al. 1994).

3.4.5.1 Binomial Component

One modeling approach was applied to FMWT and SKT survey data to explore spatially
autocorrelated binomial residuals, namely autocovarite models (AUTO). Spatial GEEs were also
explored but ultimately not considered for the following reasons. Often, spatial GEE models are
structured to include only one cluster with a fixed 7 x 7 spatial correlation matrix, where the
elements of the matrix represent distance based correlations between sampling locations (Dormann
et al. 2007, Carl and Kuhn 2007). For datasets with many observations, this approach leads to a
large spatial correlation matrix and the iterative procedure inherent to fitting spatial GEEs becomes
very computationally intensive. Given that the FMWT presence-absence dataset being analyzed
spans 30 years, the dimensions of the resultant spatial correlation matrix were very large and efforts
to fit spatial GEEs were computationally unsuccessful. Although the SKT presence-absence data

spans a much shorter time frame, convergence issues and numerical instability was evident for many
fitted spatial GEE models.

1.) Autocovariate Models — The binomial GLM for presence-absence data can be modified to
include an explanatory variable that is a distance-weighted function of neighboring values of the
response variable. This function captures how much the response variable at a particular location
reflects the response at surrounding locations. Such models have been termed AUTO models, since
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characteristics of the response data are used in the explanatory component of the model. AUTO
models take the form:

g(EW)) = XB + pA (10)

Yjek; WijYj

. For the i®
Ljek; Wij

where p is the coefficient of the autocovariate matrix A such that 4; =

sampling location, 4; is a weighted average of the response variable at the j*® sampling location
among i’s set of k; neighbors, and w;; is the weight given to j 5 influence over sampling location i
(Augustin et al. 1996, Gumpertz et al. 1997; Bardos et al. 2015).

In developing the autocovariate, a variety of neighborhood radiuses was explored, ranging
from 1 to 10 km using the saturated fixed effects model. Also, binary weights were used which
implied that sampling locations were coded as either present or absent from the neighborhood
leading to a symmetric weights matrix (Bardos et al. 2015). The R library ‘spdep’ was accessed to
estimate the autocovariate needed for model fitting.

3.4.5.2 Lognormal Component

Three modeling approaches were applied to FMWT and SKT survey data to explore spatially
autocorrelated lognormal errors, namely spatial error models (SAR,,), generalized least squares
(GLS), and generalized additive models with correlated errors (GAM,-; McMullan et al. 2007).

1.) Spatial Error Models — SAR ¢ models assume that the autoregressive process is found only in
the error term, which is likely if spatial autocorrelation is not fully explained by the explanatory
variables (induced spatial dependence), or if spatial autocorrelation is an inherent property of the
response variable itself (inherent spatial autocorrelation). The SAR,,, model is given by:

E(y) =XB + AWu (11)

where A is the spatial autoregressive coefficient, Wis the spatial weights matrix such that AW
represents the spatial structure in the spatially dependent error term u. As in the AUTO analysis, a
variety of neighborhood distances were explored for calculating elements of W (Kissling and Carl
2008) and binary weights were used (Bardos et al. 2015). The R library ‘spdep’ was accessed for
model fitting.

2.) Generalized Least Squares — The estimation technique GLS is generalization of the commonly
applied method of ordinary least squares (OLS) for regression analysis of normally distributed
response data. A key characteristic of GLS is the specification of a general error covariance matrix
such that e~N (0, X), where X is symmetric and positive-definite.

The strategy taken with the spatial GLS analysis followed the approach outlined with the
GLMMs structured to account for temporal autocorrelation. In particular, several variance and

correlation structures were first explored using the saturated model parameterization, including
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parameterizations modeling variance and correlation separately and together. Given two sampling
locations r distance apart, the specific correlation structures examined were:

Exponential: C(r) = ed
—r\2
Gaussian: C(r) = e(T)
3
Spherical: cr)=1-15()+05(%)

where d is a parameter estimated from the data (Cressie 1993). Once optimal variance and
correlation structure(s) were identified, the eight model parameterizations were fitted. Maximum
likelihood was used for parameter estimation (as opposed to restricted maximum likelihood, REML)
and the R library ‘nlme’ was accessed for model fitting.

3.) Generalized Additive Models with Correlated Errors — The final approach for addressing spatial
autocorrelation involved fitting GAMg, models. These models are extensions of additive models
(GAMs) fitted to normally distributed data (equation (5)) that allow specification of a general error
covariance matrix, much like the extension provided by GLS for linear models. As with the spatial
GLS analysis described above, combinations of variance and correlation structures were explored first
with the saturated model, again including variance and correlation structures separately and together.
Following selection of the optimal structure(s), the eight fixed effects parameterizations were then
fitted. The R library ‘mgev’ was accessed to fit all GAM ;- models.

3.4.6 Model Evaluation, Selection, and Predictions

Model selection (except for GEE models) within each class was based on Akaike’s
Information Criterion (AIC; Akaike 1974, Burnham and Anderson 2002):

AIC = —2log(L) + 2p

where L is the estimated negative likelihood value and p is the number of estimated parameters.
AIC provides insight regarding the trade-off between model complexity and goodness-of-fit, and the
model with minimum AIC value is viewed as having received the most empirical support. Since
GEEs are based on quasi-likelihood rather than maximum likelihood, there is no formal likelihood
function and AIC or related measures cannot be used for model selection. Instead, comparisons of
GEE models with different correlation structures were accomplished using the Quasi-likelihood
under Independence Criterion (QIC; Pan 2001):

QIC = —2Q(Bg, ) + 2trace(2; 1, Vy),

16



where the first term is the quasi-likelihood calculated under the independent working correlation
assumption, evaluated at the parameter estimates under the specified correlation structure, and the
second term involves the variance estimator ({2;) under the independence correlation structure and
the robust variance estimator (V) under the specified correlation structure. QIC, (Pan 2001) was
used for model selection among the eight fixed effects parameterization, conditioned on the
appropriate correlation structure:

QIC, = —2Q(Br, D) +2p

where p is the number of estimated parameters. The R library ‘MuMIn’ was accessed to calculate
QIC and QIC,,.

Fits of empirically supported models within each class were also evaluated through graphical
analyses. For binomial models, plots of residuals against the linear or additive predictor were
generated using binned residuals (Gelman et al. 2000) while Pearson residuals in relation to fitted
values were examined for lognormal models. Temporal autocorrelation in model residuals was
examined using partial autocorrelation functions (PACF), which provide insight about degrees of
correlation among of two points lagged T time units apart after any linear dependence has been
removed. Spatial autocorrelation was evaluated with correlograms of Pearson residuals. Where
possible, deviance explained by models was also calculated.

Given identification of the most supported model from each class, AIC and a 3-fold cross-
validation analysis was used to discrimination between classes (for the CPUE data from the SKT
survey, a 2-fold analysis was conducted due to convergence problems for some model types). The
cross-validation analysis assesses model fit (training error) and prediction accuracy (testing error;
Hastie et al. 2001) and involved randomly dividing the full data set into three sub-datasets of equal
size. Each sub-dataset was then used as a test dataset for prediction while the remaining sub-datasets
were considered training data for model fitting. Training and test error was calculated as:

Training (Testing) error = %Z?zl(yi — 371')2

where n is the number of observations, y; is the i observation, and J; is the associated estimated
value. The model that produces lower training and testing errors is generally preferred.

From the overall selected model structure and parameterization, predictions in relation to
cach modeled covariate were then generated for the binomial and bias corrected lognormal
components separately using marginal means (Searle et al. 1980). These predictions are intended to
provide an understanding of how delta smelt presence-absence and density relate to covariates.
However, when applying a delta-model to survey data, it is important to combine both model
components to provide an integrated estimate of overall relative abundance, defined as the product
of the encounter probability and density. Therefore, predictions representing overall estimated mean
relative abundance were also generated for the modeled covariates common to both the binomial and
lognormal components for each survey data set. Uncertainty estimates (coefficients of variation,

CV) in predicted presence-absence and density across the domains of observed covariates were

generated using nonparametric bootstrapping resampling (Efron and Tibshirani 1993).
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4. RESULTS

4.1 Fall Midwater Trawl

Following data filtering, a total of 7,441 tows remained in the FMWT dataset spanning the
years 1985 — 2015. Of those, 6,190 were zeros and 1,251 were nonzero. Although the maximum
catch was 115 delta smelt, which occurred in September of 2000 in statistical Area 13, the mean and
median catches-per-tow over the full dataset were 0.89 and 0.0, respectively. These latter two
statistics broadly indicate that low (near zero) delta smelt catches have been prevalent in the FMWT
survey data for many years.

4.1.1 Binomial Component

4.1.1.1 Baseline Models

1.) Generalized Linear Models — For the eight GLM fixed effects models fitted to the presence-
absence data, AIC was lowest for model Mg followed by models M7 (AAIC=1.0), Ms (AAIC=1.2),
and M; (AAIC=1.9). Deviance explained by model Mg was 23.4%. Beyond the covariates included
in all parameterizations, model Mg also contained the covariate overall water depth, which suggests
that the log odds encounter probability of delta smelt in the FMWT survey varies with water depth
of sampling locations. The estimated coefficients for all the continuous covariates in model Mg were
negative and statistically significant (p < 0.001) suggesting the log odds of encounter probability
decreases with increased temperature, specific conductance, Secchi depth, and overall depth. Also,
the relative magnitudes of the estimated coefficients were highest for specific conductance and Secchi
depth, modest for overall depth, and lowest for temperature.

The binned residuals plot for model Mg showed no major problems as virtually all points fell
within the + two standard error boundary lines (Fig. 4A). The PACF plot of both the raw presence-
absence data and GLM residuals showed evidence of temporal autocorrelation across several time
lags (Figs. 4B, C) and correlograms of raw data and residuals showed clear signs of spatial
autocorrelation (Fig. 4D). Collectively, the presence of autocorrelation implies the true variance in
the data is being underestimated and precision of estimated fixed effect is likely overly optimistic.

2.) Generalized Additive Models — For the baseline GAM models, AIC statistics favored model M;
followed by model Ms (AAIC=2.4). Relaxation of the linearity assumption in favor of the additive
predictor clearly supported an alternative inference about which covariates affect the log odds of
FMWT encounter probabilities of delta smelt. In contrast to the results of the GLM analysis, model
M;s was not favored (AAIC=10.7) by the GAM analysis. Model M, is the saturated
parameterization, which suggests that all covariates considered influence the log odds of delta smelt
encounter probabilities in the FMWT survey. Thus, in addition to overall depth, hour of sampling
and tidal stage influence the log odds of capturing delta smelt. Deviance explained by model M; was
27.6%, which was slightly better the most supported binomial GLM.

All of the smoothed terms were statistically significant (p < 0.001) and the basis dimensions
chosen for each smoother indicated that over-smoothing was not problematic. Overall, the
smoothed terms showed modest degrees of nonlinearity. Although model M, was favored over Ms,
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the coefficients of the levels of the tidal stage covariate (the only difference between the models) were
not significantly different from zero (p > 0.05).

As in the GLM analysis, the binned residuals plot for model Ms showed no major problems
(Fig. 5A). Temporal autocorrelation was again evident in the PACF plot of the residuals, although
to a lesser extent in terms of both magnitude and time lags than the favored GLM model (Fig 5C).
The spatial correlogram again provided evidence of spatial autocorrelation, although at a slightly
lower magnitude than correlations estimated from residuals of the most supported GLM (Fig 5D).
Again, the presence of autocorrelation implies that the precision of estimated parameters is likely too

low.

4.1.1.2 Temporal Autocorrelation

1.) Generalized Estimating Equations — Comparison of the three correlation structures considered in
the temporal GEE analysis revealed support for the exchangeable form, followed by AR1 (AQIC=2.3)
and independence (no autocorrelation; AQIC=6.1). The stronger empirical support for exchangeable
and AR1 correlation structures is consistent with the PACF results from the GLM and GAM models
and strengthens the evidence for temporal autocorrelation within the FMWT presence-absence data.
Support for the exchangeable correlation structure also indicates a lack of time-dependence among
relatedness of within-station observations, which was surprising.

Given selection of the exchangeable correlation structure, comparison of the eight model
parameterizations indicated model Mg received the most empirical support, followed by models Ms
(AQICy=2.3) and M7 (AQIC,=2.7). These results are consistent with those from the GLM analysis
that the log odds of encountering delta smelt in the FMWT is influenced by overall depth. The
coefficients of all continuous covariates were again negative, statistically significant (p < 0.012), and
the relative magnitudes of those coefficients followed the pattern estimated by the optimal GLM
model. The estimate of the within-station correlation parameter was 0.075, which is low and
indicative of a relatively weak relatedness among observations from the same station. As expected,
accounting for temporal autocorrelation through GEEs did yield slightly different estimated fixed
effects and larger standard errors when compared to the GLM results, however, overall statistical
inference remained unchanged likely because of the low estimated autocorrelation.

2.) Generalized Linear Mixed Models — Model selection among the eight parameterizations again
favored model Mg, followed by models M; (AAIC=0.34) and Ms (AAIC=2.0). These results
generalize the influence of overall depth and, to a slightly lesser degree, tidal cycle on the log odds of
delta smelt capture probabilities by the FMWT survey across all model classes considered.
Conclusions regarding statistical significance and rank order by magnitude of estimated coefficients
from model Mg were the same as those associated with the supported GLM and GEE models.
However, specific to comparisons of the GEE and GLMM model results, it is important to keep in
mind the PA versus SS interpretations. That is, GLMMs adhere to the SS interpretation and
estimate fundamentally different quantities than marginal mean parameters such that estimated
GLMM parameters will be larger in absolute magnitude than their GEE counterparts given a logit
link function (Diggle et al. 1994, Fieberg et al. 2009). This was indeed the case when the GEE and

GLMM model Mg parameter estimates were compared.
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The estimate of 6 from model Mg was 0.76, which leads to ;= 0.87. Comparatively, the
standard deviation of the random station effect was larger in magnitude than all of the estimated
coefficients of the continuous covariates except specific conductance. This implies that the variation
among stations is fairly high relative to the magnitude of the estimated environmental fixed effects.
The estimate of p was 0.19 and indicative of somewhat low similarity of within-station observations.
However, since the sampling intensity within- and between-years is high, the estimated degf was 22.9
which led to an estimate for Nggr of 324.6. Although this result suggests that the information
contained in the overall sample of 7,441 tows analyzed for presence-absence could be captured by
making approximately 325 tows, care needs to be given to the interpretation. By definition, fish
surveys must operate annually since a primary goal is to collect data that can be analyzed to yield
yearly indices of abundance. For a fixed station survey design that is executed over many years, the
number of occasions that each location is sampled will become unavoidably large, thereby driving up
the estimated degr value (recall that the equation for degr includes a parameter for the number of
observations per subject/station). To address the effective sample size issue more directly, the year
covariate was removed from model Mg and the resulting parameterization was fitted to each year of
FMWT data separately under the idea that the full survey data set is simply a collection of annually
conducted experiments to assess delta smelt relative abundance. From each of the model fits, Neg
was estimated and the results were fairly wide ranging. In some years, Negr was considerably lower
than the actual number survey tows conducted, while in other years Nggr was approximately equal to
the number of tows conducted (Fig. 6). However, the average Negr across years was 78% of the

actual yearly sample size, which provides some indication of oversampling.

4.1.1.3 Spatial Autocorrelation

1.) Autocovariate Models — Comparison of the saturated model parameterization with an
autocovariate explanatory variable based on neighborhood radiuses ranging from 1 to 10 km
indicated that a distance of 7 km was optimal. This result implies that the spatial relatedness of delta
smelt presence-absence measurements in FMWT collections is best described by allowing
neighborhoods surrounding sampling locations to extend outwardly a distance of 7 km.

Model selection statistics associated with fits of the eight parameterizations structured to
include the autocovariate favored model Mg, followed by models Ms (AAIC=0.2), model M; (AAIC
=0.6), and model M; (AAIC=0.9). Such closeness among AIC statistics supports plausibility of all
four model fixed effect combinations. Despite addressing an entirely different form of
autocorrelation (spatial versus temporal), there is again strong support for the overall depth covariate
followed closely by hour of sampling and tidal cycle. The coefficients for the continuous covariates
included in model M were again all negative and the relative magnitudes followed the previously
described rank order. However, inclusion of the autocovariate in model Mg led to lower estimated
fixed effects when compared to those from the same baseline and temporal autocorrelation models.
The deviance explained increased from 23.4% in the GLM model Ms to 28.3% in the AUTO
model M.
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4.1.1.4 Summary

Evaluation of model selection statistics associated with the most supported baseline GLM,
baseline GAM, temporal GLMM, and spatial AUTO models fitted to the FMWT presence-absence
data revealed overwhelming empirical support for the autocovariate model. In relative AIC units,
the other models did not compare (all AAIC values > 32.4), which suggests that spatial
autocorrelation is more pervasive than temporal autocorrelation in the FMWT delta smelt presence-
absence data. This is related to the relatively low estimated within-station correlations from the
temporal GEE and GLMM models. Unfortunately, from the perspective of identifying the most
parsimonious description of the full data set, the favored GEE model cannot be compared to its
counterparts from other classes because of reliance on quasi-likelihood estimation procedures.
However, in the context of prediction accuracy, all models can be compared through cross-
validation, and results from the 3-fold analysis showed that the baseline GAM and AUTO models
yielded the lowest average training and testing errors (Table 2).

Recommendation: the collective evidence suggests that the optimal AUTO model should be used for
statistical inference and generating predicted delta smelt encounter probabilities in relation to
modeled covariates. This result leads to the inference that beyond the year, temperature, specific
conductance, and Secchi depth covariates, overall water depth also plays an important role in
affecting the presence-absence of delta smelt in FMWT survey collections. Model based predictions
of capture probabilities over the domains of observed covariates along with estimated uncertainty are

provided in Figs. 7A-E.

4.1.2 Lognormal Component

4.1.2.1 Baseline Models

1.) Generalized Linear Models — Examination of AIC statistics associated with GLM fits to the
nonzero delta smelt CPUE data collected by the FMWT showed that model Ms received the most
empirical support, followed by models Ms (AAIC=0.7), M4 (AAIC=1.0), and M (AAIC=1.7).
Deviance explained by model Ms was 20.7%. In addition to the covariates included in all
parameterizations, model Ms also contained the covariate hour of sampling, which implies there is a
signal that CPUE of the FMWT survey varies throughout the sampling day, although formal
statistical significance was not detected (p>0.05). Comparison of the second and third ranked
models, Msand My, indicated some importance of overall water depth, but again, statistical
significance was not detected (p>0.05). In decreasing rank order by magnitude, estimated
coefficients from model Ms were negative for specific conductance, Secchi depth, and hour of
sampling, indicating an inverse relationship with CPUE. Statistical significance was evident for
specific conductance and Secchi depth (p < 0.001). The estimated temperature effect was positive
but small in magnitude and not statistically significant (p>0.5).

The plot of residuals against fitted values showed heterogeneous variance (Fig. 8A), which
implies that the true variance in the CPUE data is not well estimated by the GLMs and the above
statistical inferences should be taken with caution. The PACF plot of the log of the raw CPUE data
showed slight temporal autocorrelation (Fig. 8B), however, the PACF of the GLM residuals showed
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no evidence of temporal autocorrelation (Fig. 8C). This suggests that temporal relatedness in CPUE
observations was essentially removed by the fixed effects in the GLM. Slight spatial autocorrelation
was evident in both the raw data and model residuals (Fig. 8C).

2.) Generalized Additive Models — Model selection statistics of the eight fitted parameterizations
overwhelmingly favored model Ms, which again highlights the relationship of CPUE with hour of
sampling as well as overall depth. Competing empirical support was detected for model M,
(AAIC=3.4). Deviance explained by model Mg was 26.4%, which was slightly better the most
supported lognormal GLM.

All of the smoothed terms were statistically significant (p < 0.02) except temperature, and the
basis dimensions used for the smoothed terms indicated no concerns about over-smoothing. The
extent of nonlinearity exhibited by the smoothed terms was modest. However, as in the GLM
analysis, heterogeneous variance was evident (Fig. 9A), temporal autocorrelation in model residuals
was not present (Fig 9C), and slight spatial autocorrelation in residuals was detected (Figs. 9D).

4.1.2.2 Temporal Autocorrelation/Heterogeneous Variance

1.) Generalized Estimating Equations — Given the lack of evidence for temporal autocorrelation
from the GLM and GAM analyses, GEEs models were not applied to nonzero CPUE data from the
FMWT survey.

2.) Generalized Linear Mixed Models — As noted previously, GLMMs can be structured to model
heterogeneous variance, and given the strong evidence of increasing variance with fitted values from
the GLM and GAM residuals plots (Figs 8A, 9A), those models were retained in the analytical
framework despite no evidence of temporal autocorrelation.

Exploration of model fits with the various heterogeneous variance structures considered
supported inclusion of the exponential of the mean form. Model selection statistics associated with
eight fitted GLMM:s with that variance function indicated support for both models Msand M3
(AAIC=0.01), followed by models M7 (AAIC=0.27) and Ms (AAIC=0.66). These results differ from
those of the baseline GLM analysis and downplay the effect of hour of sampling. In rank order from
model My, negative effects were estimated for specific conductance, and Secchi depth while the effect
of temperature was positive. Statistical significance was detected for only specific conductance and
Secchi depth (p < 0.001). The exponential of the mean variance model lead to a considerably
improved and much more acceptable residuals plot.

Because of the heterogeneous variance in the data as expressed though the exponential of the
mean variance function, the estimate of ()’e2 was quite large. By comparison, the estimate of lf was
negligible implying that, relative to the overall heterogeneous variance in the data, the relatedness of
observations collected from the same sampling locations over time was approximately zero. Asa
result, the estimate of p was very small such that there was no discernable difference between the
estimate of Negr and the actual realized sample size.
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3.) Generalized Additive Mixed Models — Investigation of the appropriate variance structure for the
nonzero CPUE data with GAMMs fitted reflecting the saturated parameterization again supported
the exponential of the mean form. For the subsequent eight fitted parameterizations, model
selection statistics indicated model Mswas favored, although there was comparable support for
model Mg (AAIC=1.24) and model M, (AAIC=1.53). These results differ somewhat from the
baseline GAM analysis which draws attention to the effects of accommodating heterogeneous
variance. Beyond the required covariates, model Msalso included hour of sampling as opposed to
the favored GAM model which also included both hour of sampling and overall depth. All of the
smoothed terms from model Ms were statistically significant with the exception of temperature,
inspection of the basis parameters indicated that there was no evidence of oversmoothing, and the
degree of estimated nonlinearity was modest. Although slightly different than the residuals plots
from the GLM and GAM models, the exponential of the mean variance function again lead to
greatly improved diagnostics.

4.1.2.3 Spatial Autocorrelation
1.) Spatial Error Models — For the SARg, analysis, neighborhood radiuses could only be
successfully estimated for distances ranging from 4 to 10 km. Attempts to fit models with smaller
radiuses (1-3 km) were unsuccessful due to lack of convergence, which may be the related to the
relative weak spatial autocorrelation associated with the baseline GLM and GAM correlograms (Figs.
7C, 8C). Comparisons of models that were able to be fitted supported a spatial radius definition of
4 km, so operationally with the SAR,;, analysis this neighborhood was implemented. It should be
noted that the neighborhood estimated by the AUTO analysis of the FMWT data was larger, which
indicates broader spatial domains of relatedness among presence-absence than relative abundance.
Model selection statistics of the eight fitted SAR . parameterizations favored both models
Ms, and M4 (AAIC=0.09). The estimated coefficients for the continuous covariates from model Mg
were again negative for specific conductance, Secchi depth, and overall depth, and statistical
significance was detected for the first two (p < 0.001). The estimated coefficient of temperature was
positive but not statistically significant (p > 0.2).

2.) Generalized Least Squares — Exploration of various combinations of variance and correlation
structures showed that a parameterization with the exponential of the mean variance form alone
received the most empirical support, followed by a model with both exponential of the mean
variance and exponential correlation structures (AAIC=2.0). This result again suggests that the
empirical support for spatial autocorrelation of the residuals is comparably not strong and can
potentially be ignored in favor of a simpler parameterization designed to model variance
heterogeneity alone. Structurally, the GLS analysis only differed from the baseline GLM analysis
through the structure of the error covariance matrix.

Among the eight fitted GLS parameterizations, comparison of AIC statistics favored model
M followed by model Ms (AAIC=2.2). These results indicate that the simplest model provided the
most parsimonious description of the data with some support for the hour of sampling covariate,
which differed from the favored GLM model. For the continuous model My covariates, all
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estimated coefficients were negative and statistical significance was detected for specific conductance
and Secchi depth (p < 0.001), with the former being largest in magnitude.

3.) Generalized Additive Model with Correlated Errors — The results of the GAM,, analysis were
very similar to those from the GLS analysis. That is, exploration of different combinations of
variance and correlation structures revealed the parameterization with exponential of the mean
variance form alone was favored based on model selection statistics (AAICs of other models = 2.0).
Thus, relaxation of the linearity assumption associated with the GLS models did not alter
conclusions about the relative importance of heterogeneous variance and lack of spatially correlated
residuals. And again, this result is consistent with previous modeling results regarding the relatively
low degree of estimated spatial autocorrelation.

Comparisons of the eight fitted parameterizations with the exponential of the mean variance
structure indicated that model Ms received the most empirical support, followed by models M,
(AAIC=0.32), Ms (AAIC=0.37), and M, (AAIC=0.77). These results lend support for the effects of
covariates hour of sampling and depth, and to a lesser degree, tidal cycle. The basis dimensions used
for the smoothed terms indicated no concerns about over-smoothing, modest nonlinearity and
statistical significance was detected for the smoothed terms associated with specific conductance,
Secchi depth, and hour of sampling (p < 0.001). The smoothed terms for temperature and depth
were both nearly statistically significant (0.06 < p < 0.08).

4.1.2.4 Summary

Comparison of model selection statistics estimated from the favored baseline GLM, baseline
GAM, GLMM, GAMM, SAR, GLS, and GAM,,,- models fitted to the nonzero CPUE data from
the FMWT survey revealed overwhelming empirical support for the GAMM model. In relative AIC
units, the other models did not compare (all AAIC values > 23.0). Accommodating the
heterogeneous variance was clearly very important, as was the nonlinearity afforded by the additive
model structure even though it was low-to-modest across the modeled covariates. Evidence for
spatial autocorrelation was not strong amongst multiple model structures, which provides convergent
lines of evidence suggesting that this form of dependence among residuals could effectively be
ignored. Results of the 3-fold cross-validation analysis showed that the baseline GAM and GAMM
models yielded the lowest training and testing errors (Table 3), although the former model has very
obvious structure limitations for proper quantification of uncertainty.

Recommendation: the collective evidence suggests that the most supported GAMM model should be
used for statistical inference and generating predicted delta smelt density in relation to modeled
covariates. This result leads to the inference that beyond the year, temperature, specific
conductance, and Secchi depth covariates, hour of sampling also plays an important role in affecting
the CPUE of delta smelt in FMWT survey collections. Model based predictions of delta smelt
density over the domains of observed covariates along with estimated uncertainty are provided in
Figs. 10A-E. Predictions from the combined binomial and lognormal models are given in Figs. 11A-

D.
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4.2 Spring Kodiak Trawl

Following data filtering, a total of 2,551 tows remained in the SKT dataset spanning the
years 2002 — 2015. Of those, 1,846 were zeros and 705 were nonzero. The maximum catch of 375
delta smelt occurred in January of 2009. Although the mean catch-per-tow over the full dataset was
2.8 fish and higher than that of the FMWT, the median was again 0.0 indicating sparse presence of
delta smelt in the SKT survey.

4.2.1 Binomial Component

4.2.1.1 Baseline Models

1.) Generalized Linear Models — For the eight GLM fixed effects models fitted to the presence-
absence data, AIC was lowest for model M, followed by model M, (AAIC=3.7). Deviance explained
by model M; was 21.9%. This result implies the fully saturated model was most supported which
suggests that, beyond the covariates included in each parameterization, the log odds encounter
probability of delta smelt in the SKT survey varies with tidal cycle, hour of sampling, and overall
water depth. The estimated coefficients for all the continuous covariates in model M; except overall
depth were negative and all were statistically significant (p < 0.01). The relative magnitudes
(absolute value) of the estimated coefficients ranked from largest to smallest were Secchi depth,
specific conductance and temperature (indistinguishable), depth, and hour of sampling.

The binned residuals plot for model M; showed no major problems as all but one point fell
within the + two standard error boundary lines (Fig. 12A). The PACF plot of raw presence-absence
data indicated a high degree of temporal autocorrelation (Fig. 12B) which was less but still evident in
the PACF plot of GLM residuals (Fig. 12C). The correlograms of raw data and model residuals
both showed signs of spatial autocorrelation (Fig. 12D). Collectively, the presence of
autocorrelation implies the true variance in the data is being underestimated and precision of
estimated fixed effect is overly optimistic.

2.) Generalized Additive Models — For the baseline GAM models, AIC statistics favored model M,
followed by model M; (AAIC=3.3). These results indicate that relaxation of the linearity assumption
in favor of the additive predictor did not supported an alternative inference about which covariates
affect the log odds of SKT encounter probabilities of delta smelt. Deviance explained by model M,
was 30.3%, which was notably better the most supported binomial GLM.

All of the smoothed terms were statistically significant (p < 0.035) and the basis dimensions
chosen for each smoother were appropriate except for the covariate overall depth. More flexibility
was required for this covariate and the estimated pattern showed a high degree of nonlinearity. For
all other smoothed terms, modest nonlinearity was detected.

As in the GLM analysis, the binned residuals plot for model M; showed no major problems
(Fig. 13A). Slight temporal autocorrelation was evident in the PACF plot of the residuals at fewer
time-lags when compared to the PACF residual plot from the favored GLM model (Fig. 13C). The
spatial correlogram provided evidence of slight spatial autocorrelation but weaker in magnitude than

correlations estimated from residuals of the most supported GLM (Fig. 13D).
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4.2.1.2 Temporal Autocorrelation

1.) Generalized Estimating Equations — Comparison of the three correlation structures considered in
the temporal GEE analysis revealed support for the AR1 form, followed by independence (no
autocorrelation; AQIC=1.2). The stronger empirical support for AR1 correlation structures is
consistent with the PACF results from the GLM and GAM models and strengthens the evidence for
temporal autocorrelation within the SKT presence-absence data. Support for the AR1 correlation
structure also indicates a time-dependence among relatedness of within-station observations.

Given selection of the AR1 correlation structure, comparison of the eight model
parameterizations indicated model M received the most empirical support, followed by models M
(AQICy=3.8). These results are consistent with those from the GLM and GAM analyses that the log
odds of encountering delta smelt in the SKT is influenced by all covariates considered. The
coefficients of all continuous covariates except overall depth were again negative, but only Secchi
depth, specific conductance, and temperature were statistically significant (p < 0.001). The relative
magnitudes of those coefficients followed the pattern estimated by the favored GLM model. The
estimate of the within-station correlation parameter was 0.10, which is larger than that estimated by
the optimal GEE model from the FMWT analysis. As expected, accounting for temporal
autocorrelation through GEEs did yield slightly different estimated fixed effects and larger standard
errors when compared to the GLM results, and while model selection results remained unchanged,
inferences based on traditional hypothesis testing were different.

2.) Generalized Linear Mixed Models — Comparison of the eight parameterizations fitted favored
model M3, followed by models M; (AAIC=0.70) and M, (AAIC=1.92). These results highlight the
importance of tidal cycle and deemphasize the previously noted importance of hour of sampling and
overall depth on the log odds of delta smelt capture probabilities by the SKT survey. The estimated
coefficients for all continuous covariates were negative, statistically significant (p < 0.001), and the
magnitudes in decreasing rank order were Secchi depth, temperature, and specific conductance.
Thus, the results of the GLMM analysis indicate a stronger relative effect of temperature than
estimated by the optimal GLM and GEE models.

The estimate of 6 from model Mg was 2.21, which leads to ;= 1.49. Comparatively, the
standard deviation of the random station effect was larger in magnitude than all of the estimated
coefficients of the continuous covariates. This implies that the variation among stations is very high
relative to the magnitude of the estimated environmental fixed effects. The estimate of p was 0.40
and indicative of appreciable similarity of within-station observations. The estimated degf was 26.2
which led to an estimate for Nggr of 97.4. These results indicate that the information contained in
the overall sample of 2,552 tows analyzed for presence-absence could be captured by making
approximately 98 tows, although the same care discussed in the FMWT GLMM analysis is also
germane here. Addressing the effective sample size more directly through the annual analysis
described in the FMWT GLMM analysis yielded estimates of Negr that were consistently lower than
the actual number survey tows conducted (Fig. 14). The average Neggr across years was 48% of the
actual yearly sample size, which provides fairly strong evidence of oversampling.
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4.2.1.3 Spatial Autocorrelation

1.) Autocovariate Models — Exploration of neighborhood radiuses ranging from 1 to 10 km using
the saturated model parameterization with an autocovariate explanatory variable revealed that a
distance of 2 km was optimal. Thus, the spatial relatedness of delta smelt presence-absence
measurements in the SKT survey is best described by allowing neighborhoods surrounding sampling
locations to extend outwardly a distance of 2 km.

Model selection statistics associated with fits of the eight parameterizations structured to
include the autocovariate supported model My, followed by models M3 (AAIC=0.45). Such
closeness among AIC statistics supports plausibility of both models. Despite addressing an entirely
different form of autocorrelation (spatial versus temporal), there is again support for the tidal cycle
covariate and overall depth. The coefficients for the continuous covariates included in model M,
were all negative and statistically significant (p < 0.001), with the exception of the low estimated
positive effect for overall depth (p > 0.1). As noted from the most supported GLMM model, the
estimated effect of temperature ranked second in between Secchi depth and specific conductance.

The deviance explained by AUTO model M; was 31.5%.

4.1.1.4 Summary

Comparison of AIC model selection statistics associated with the favored baseline GLM,
baseline GAM, temporal GLMM, and spatial AUTO models fitted to the SKT presence-absence
data revealed overwhelming empirical support for the GLMM model (all AAIC values > 24.7). This
result suggests that accommodating temporal autocorrelation is more important than
accommodating spatial autocorrelation in the SKT delta smelt presence-absence data. Recall that
the nonlinearity of the baseline GAM appeared to reduce the strength of both forms of
autocorrelation, which suggests that a GAMM may be optimal. However, current software for
fitting binomial GAMMs rely on penalized quasi-likelihood estimation which is known to lead to
biased parameters estimates, particularly when expected numbers of successes are low (< 5, Bolker et
al. 2009). Binomial GAMMs represent an attractive future modeling option for the SKT delta smelt
presence-absence data should software packages evolve alternative estimation frameworks for these
models. Although results from the 3-fold analysis indicated the baseline GAM and AUTO models
yielded the lowest average training and testing error (Table 4), all model types performed similarly
such that the improved empirical support for the GLMM outweighs the slight loss in prediction
accuracy.

Recommendation: the collective evidence suggests that the most supported GLMM model should be
used for statistical inference and generating predicted delta smelt encounter probabilities in relation
to modeled covariates. This result leads to the inference that beyond the year, temperature, specific
conductance, and Secchi depth covariates, tidal cycle also plays an important role in affecting the
presence-absence of delta smelt in SKT survey collections. Model based predictions of capture

probabilities over the domains of observed covariates along with estimated uncertainty are provided
in Figs. 15A-E.
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4.2.2 Lognormal Component

4.2.2.1 Baseline Models

1.) Generalized Linear Models — Model comparisons of the GLM models fitted to the nonzero delta
smelt CPUE data collected by the SKT survey showed that model Mg received the most empirical
support, followed by models Ms (AAIC=1.9) and M7 (AAIC=2.3). Deviance explained by model Ms
was 14.9%. In addition to the covariates included in all parameterizations, model M also contained
the covariate overall depth. Comparison of the second and third ranked models both include overall
depth which strengthens support for that covariate. The estimated coefficients of the continuous
covariates from model M were all negative except for overall depth and suggestive of inverse
relationships with CPUE. Absolute values of coefficients in decreasing rank order were: Secchi
depth, temperature, overall depth, and specific conductance. Statistical significance (p < 0.006) was
detected for all continuous covariates except specific conductance (p=0.74), which indicated little
effect of salinity on the CPUE of delta smelt sampled by the SKT survey.

The plot of residuals against fitted values showed heterogeneous variance (Fig. 16A), which
implies that the true variance in the CPUE data is likely underestimated by the GLMs and the above
statistical inferences should be taken with caution. The PACF plots of both the log of the raw
CPUE data and the GLM residuals showed a high degree of temporal autocorrelation (Figs. 16B, C)
and the correlograms of the log of the raw CPUE data and model residuals were very similar and
both suggestive notable spatial autocorrelation (Fig. 16D).

2.) Generalized Additive Models — Exploration of the model selection statistics of the eight fitted
parameterizations favored model Mg, followed by model M; (AAIC=2.2). Clearly, the use of an
additive predictor over the linear predictor altered inference regarding importance of the covariates
considered. Deviance explained by model Mg was 36.1%, which was more than double that
explained by the most supported lognormal GLM.

Only the smoothed terms for temperature, Secchi depth, and overall depth were statistically
significant (p < 0.048) and the basis dimensions chosen for each smoother were appropriate except
for the covariate overall depth. More flexibility was required for this covariate and the estimated
pattern showed a high degree of nonlinearity. For all other smoothed terms, modest nonlinearity
was detected. As in the GLM analysis, heterogeneous variance was evident (Fig. 17A), yet the degree
of both temporal and spatial autocorrelation was greatly reduced compared to the favored GLM

model (Figs. 17C, D) and likely due to the nonlinearity afforded by the additive predictor.

4.2.2.2 Temporal Autocorrelation/Heterogeneous variance

1.) Generalized Estimating Equations — Comparison of the three correlation structures considered in
the temporal autocorrelation GEE analysis overwhelmingly supported the exchangeable structure (all
(AQIC > 24.1), which indicates no time dependence of the relatedness of samples taken from the
same sampling station. Model selection among the eight parameterizations with the exchangeable
correlation structure favored model Mg, followed by model M; (AQICu=1.8). Comparison of
output from GEE and GLM models Ms were very similar in terms of signs, magnitudes, and relative
rankings of estimated coefficients. However, statistical significance in the GEE model Mg was only
detected for the temperature covariate (p < 0.001) as opposed to the significance found for
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temperature, Secchi depth, and overall depth in the favored GLM model. The estimate of the
within-station correlation parameter was 0.59 from GEE model Mg, which is fairly high and
suggestive of considerable similarity among observations from the same station, at least in the

context of a linear predictor.

2.) Generalized Linear Mixed Models — Exploration of the different variance structures supported
use of the exponential of the mean form, as was the case in the GLMM analysis of the FMWT data.
As noted previously, diagnostic plots associated with fits of the favored GLM and GAM models both
showed strong patterns of increasing variance with fitted values (Figs 13A, 14A), so the improved
performance of models including a variance function such as the exponential of the mean was not
surprising. Evaluation of model selection statistics associated with eight fitted GLMMs including
the exponential of the mean variance function indicated support for both models My, followed by
models M5 (AAIC=1.4) and Ms (AAIC=1.5). These results differ somewhat from those of the
baseline GLM analysis in that the effect of the covariate overall depth was considerably lower.
Negative effects were estimated for all continuous covariates in model My and statistical significance
was associated only with the estimated temperature effect (p < 0.001).

Because of the heterogeneous variance in the data as expressed though the exponential of the
mean variance function, the estimate of 62 was quite large. By comparison, the estimate of o7 was
only small implying that, relative to the overall heterogeneous variance in the data, the relatedness of
observations collected from the same sampling locations over time was negligible. The estimate of p
was approximately zero such that there is no discernable difference between the estimate of Nggr and

the actual realized sample size.

3.) Generalized Additive Mixed Models — Comparisons of different variance structures for the
CPUE data with GAMMs fitted to the saturated parameterization again supported the exponential
of the mean model. For the eight parameterizations structured to include the heterogeneous
variance form, model selection statistics indicated model M4 was favored, followed by model M3
(AAIC=2.26). These results differ from the baseline GAM analysis which draws attention to the
effects of accommodating temporal autocorrelation and heterogeneous variance. The simplest
GAMM parameterization was supported as opposed to the optimal GAM model which included the
covariates hour of sampling and overall depth. Only the smoothed term for temperature from
model M4 was statistically significant (p < 0.001), and inspection of the basis parameters indicated
that there was no evidence of oversmoothing and that the degree of estimated nonlinearity was
modest. The estimate of 62 was again very large such that the residual variance far out weighted the
estimate of 7. The parameter p was near zero and Negr was approximately the same as the actual

realized sample size.

4.2.2.3 Spatial Autocorrelation

1.) Spatial Error Models — Comparison of the saturated SAR ;- model parameterization with the
spatial weights matrix based on neighborhood radiuses ranging from 6 to 10 km indicated that a
distance of 7 km was optimal (attempts to fit models with smaller radiuses were unsuccessful).
Therefore, the spatial relatedness of delta smelt CPUE measurements in SKT survey samples is best
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described by allowing neighborhoods to extend outwardly a distance of 7 km, which is less than the
optimal neighborhood estimated by the AUTO analysis of the presence-absence data.

Model selection statistics of the eight fitted parameterizations favored model Mg, followed by
models Mg (AAIC=0.3), M, (AAIC=2.8), and M, (AAIC=2.8). Addressing an entirely different
form of autocorrelation (spatial versus temporal) altered inferences from the simplest
parameterization to one that included overall depth. Absolute values of estimated coefficients in
decreasing rank order were associated with covariates temperature, Secchi depth, overall depth, and
specific conductance. Statistical significance (p < 0.001) was detected for all continuous covariates
except specific conductance (p>0.7), which again indicates little effect of salinity on the CPUE of
delta smelt sampled by the SKT survey.

2.) Generalized Least Squares — Model selection statistics associated with various combinations of
variance and correlation structures showed that a parameterization with the exponential of the mean
variance form alone received the most empirical support, followed by a model with exponential of
the mean variance and a spherical correlation structure (AAIC=2.0). This result suggests that the
empirical support for spatial autocorrelation of the residuals is comparably not strong and can
potentially be ignored in favor of a simpler parameterization designed to model variance
heterogeneity alone. Although the GLS analysis of the FWMT survey CPUE data yielded similar
results, the estimated correlations from the correlogram were considerably lower than those
associated with the correlogram from the GLM analysis of the SKT data. Hence, empirical support
in favor of ignoring spatial autocorrelation within the SKT was somewhat surprising.

Among the eight fitted parameterizations structured to only accommodate heterogeneous
variance, model selection statistics overwhelmingly favored model Mg. No other parameterization
received comparable empirical support. These results again highlight the effect of overall depth on
the CPUE data collected by the SKT survey. For the continuous model Ms covariates, the signs,
relative magnitudes, and statistical significance was the same as in the favored model from the

SAR,, analysis.

3.) Generalized Additive Model with Correlated Errors — The results of the GAM,,,- analysis were
very similar to those from the GLS analysis. That is, exploration of different combinations of
variance and correlation structures revealed the parameterization with exponential of the mean
variance form alone was favored based on model selection statistics (AAICs of other models = 2.0).
Thus, relaxation of the linearity assumption associated with the GLS models did not alter
conclusions about the relative importance of heterogeneous variance and spatially correlated
residuals.

Comparisons of the eight fitted parameterizations with the exponential of the mean variance
structure indicated that model Mg received the most empirical support, followed by model Ms
(AAIC=3.3). These results lend support for the effect of covariate overall depth. The basis
dimensions used for the smoothed terms followed those used for the baseline GAM analysis and
statistical significance (p < 0.002) was detected for the smoothed terms associated with all
continuous covariates except specific conductance (p > 0.10).
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4.1.2.4 Summary

Comparison of AIC statistics from the optimal baseline GLM, baseline GAM, GLMM,
GAMM, SAR, GLS, and GAM,,, models fitted to the CPUE data of the SKT survey indicated
empirical support for the temporal GLMM model, followed by the temporal GAMM (AAIC=5.1).
Clearly, the heterogeneous variance model structure was an important element to incorporate as was
accommodating the longitudinal nature of the data through the random effect. Since model My was
optimal for both the GLMM and GAMM, and the degree of nonlinearity exhibited by the
smoothed terms in the additive model was modest, the additional structure and estimated
parameters associated with the GAMM were not necessary. Evidence for spatial autocorrelation in
the CPUE data of the SKT survey was not strong suggesting that this form of dependence among
residuals could effectively be ignored. Results of the 2-fold cross-validation analysis showed that the
GLMM and baseline GAM models yielded the lowest training and testing errors (Table 5).
Although the optimal GEE model could not be included in AIC-based model selection comparisons,
it did not perform well in the cross-validation analysis.

Recommendation: the collective evidence suggests that the most supported GLMM model should be
used for statistical inference and generating predicted delta smelt density in relation to modeled
covariates. This result leads to the inference that only the year, temperature, specific conductance,
and Secchi depth covariates play important roles in affecting the CPUE of delta smelt in SKT survey
collections. Model based predictions of capture probabilities over the domains of observed
covariates along with estimated uncertainty are provided in Figs. 18A-D. Predictions from the
combined binomial and lognormal models are given in Figs. 19A-D.

5. DISCUSSION

Over the past several decades, a great deal of research has been conducted to advance the
scientific enterprise of the Delta with regards to fish life history/life-cycle biology and ecology,
including investigations of habitat preferences and how fish populations or components of
populations interact with surrounding environments. Two arguably galvanizing studies for the
Delta are those by Jassby et al. (1995) and Kimmerer (2002) which reported the importance of
variables such as X, (defined as the horizontal distance up the axis of the estuary where the tidally
averaged near-bottom salinity is 2 psu) and flow within the Delta on the relative abundance (or
survival) for several fish species. However, the conclusions of both studies were derived from
statistical regressions relating annual indices of relative abundance (or survival) to those
environmental variables. Such an approach may be attractive due to its simplicity, but it must be
recognized that any index of abundance is a synthesis of a large number of raw field observations.
Although the primary purpose of a fish survey is to obtain a collection of measures of fish relative
abundance across different time periods and spatial locations, associated measurements of
environmental parameters are also routinely recorded for the explicit purpose of providing synoptic
representations of how fishes are interacting with the surrounding environment. Therefore,
analytical efforts that focus on only annual abundance indices explicitly ignore and lose the wealth of
highly informative auxiliary data intentionally collected with each stand-alone survey observation.
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In the case of the FMWT, the overall loss of information is substantial since each annual index of
relative abundance is based on ~400 individual survey samples. Despite the outstanding efforts of
biologists working in the Delta to continually maintain extensive, high quality fish survey databases
such as those derived from the FWMT and SKT sampling programs, very little attention has been
directed at analyzing raw data for the purposes of gaining insight into the biology/ecology of resident
fish species. Feyrer et al. (2007, 2011) and Latour (2016) represent the only published studies that
have analyzed raw fish survey data from the Delta, and the former two focused exclusively on
presence-absence data as opposed to CPUE or some integration of presence-absence and CPUE.
The paucity of such analyses is inconsistent with how fish survey data are treated worldwide (e.g.,
development of standardized indices of abundance using model based procedures for stock
assessments of commercially harvest aquatic resources). This context was a key motivation for the
current study.

Statistical analyses of large datasets such as those associated with longstanding fish surveys
can be challenging since sound inference science requires careful treatment of the underlying data
and explicit consideration of the assumptions inherent to analytical methods. As evidenced by the
results of this study, the FMWT and SKT delta smelt survey data each contain several similar
characteristics that each should be accommodated within a statistical modeling framework. Most
notably are the excessive number of zero observations, longitudinal nature of the data (fixed station
designs where measurements are repeatedly taken from the same locations over time), and the
relatively high spatial density of samples taken throughout the respective sampling frames. All of
these structural features within the FMWT and SKT survey datasets were explicitly accommodated
in the current study.

5.1 Presence-Absence

The diagnostic plots associated with the baseline binomial GLM and GAM models indicated
evidence of temporal and spatial autocorrelation in the presence-absence data from both surveys.
However, the model evaluation, comparison, and selection procedures employed supported a spatial
model for the FMWT data and a temporal model for the SKT data. For the FMWT survey data,
such strong support for a spatial model implies that there is considerable relatedness amongst delta
smelt capture probabilities across space such that an AUTO model with a 7 km spatial
neighborhood was favored. A possible explanation of this result is that delta smelt during the fall
season are not clustered such that presence-absence differences are relatively homogeneous across
modestly large spatial scales. In turn, this raises questions about the need for such highly spatially
resolved sampling. For example, within two of the core statistical sampling areas of the FMWT
survey (i.e., Areas 12, 13) ten or more trawl tows are conducted during each research cruise.
Alternatively, it may be worth exploring the necessity of conducting four monthly cruises each year.
Although the temporal GLMM model received considerably less empirical support than the spatial
AUTO model, results of the GLMM analysis did indicate that for approximately half of the years
analyzed, the effective sample size was notably lower than the actual number of trawl tows
conducted.

For the SKT survey data, the strong empirical support for the GLMM offers fairly
convincing evidence that there appreciable relatedness among presence-absence observations within
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sampling locations over time. This result suggests that there are stations within the SKT sampling
frame where delta smelt are routinely and consistently captured and there are other stations where
delta smelt are not regularly captured. Since the SKT survey is conducted during winter/spring
months, a potential explanation relates to spawning behavior of adult delta smelt and that
movements may be restricted during this time period. Annual estimates of effective sample size were
consistently below the actual number of trawl tows conducted (less than half in several years).

Delta smelt is a rare species and it is recognized that survey capture probabilities will
undoubtedly be low. However, the autocorrelative nature of the data from both surveys can
potentially form the basis for discussions surrounding the current designs of both surveys. For
example, reallocation of a small portion of current sampling efforts (e.g., 10-15%) within either
program would not likely lead to much loss of overall delta smelt information, yet those resources
could be directed toward auxiliary studies employing alternative designs such as stratified random
sampling or depletion sampling. Discussions of this nature could prove useful moving forward.

Regarding the importance of modeled covariates on the presence-absence of delta smelt in
both survey programs, the results of the AUTO and GLMM models draw attention to the variables
overall water depth and tidal cycle, respectively. For the FMWT survey, capture probabilities
modestly declined with increasing depth which could be the result of either differential water
column usage by delta smelt or depth-associated changes in efficiency of trawl gear. It is worth
noting that the effect of overall depth on FMWT delta smelt capture probabilities was similar in
magnitude as the effect of temperature, which is somewhat surprising given the well-known
physiological and behavioral effects of the later in fishes. Delta smelt capture probabilities by the
SKT survey varied tidally, with the highest occurring during slack tide and the lowest during ebb
tide. Although the estimated effects were not large in magnitude, it is quite plausible that delta smelt
behaviorally seck alternative habitat types or locations under conditions of increased water
movement, even within relatively localized areas and over short time scales. The differential effects
between ebb and flood suggest that those behavioral changes may be exacerbated during conditions

of outflowing water.

5.2 CPUE

The diagnostic plots associated with the baseline lognormal GLM and GAM models fitted to
the CPUE data of the FMWT survey indicated very little evidence of temporal or spatial
autocorrelation. The most supported final model was the heterogenecous GAMM rather than any of
the autocorrelation models. This result suggests that there is negligible temporal or spatial
relatedness among FMWT collections that successfully capture at least one delta smelt, and that the
number of delta smelt captured across those tows is highly variable. This latter concept is consistent
with the notion that delta smelt do not form schools due to a lack of synchronized swimming. With
respect to the importance of modeled covariates on CPUE data from the FMWT survey, the
GAMM results highlight the importance of hour of sampling. The predicted pattern of density with
increasing time-of-day was ‘U’ shaped, which suggests higher observed CPUE levels during
crepuscular time periods. This result is typical for fishes that engage in diel vertical behavior where
feeding increases during darker portions of the day when zooplankton are more stratified in the
water column. However, it should be noted that majority of crepuscular survey observations within

33



the FMWT survey dataset occurred early in the time-series such that there appears to have been an
evolution in the daily timing of survey operations. Crepuscular survey tows are essentially absent
from the data in recent years. Another notable result was the lack of a temperature effect on CPUE
from the FMWT survey (recall that temperature was retained in all model parameterizations).

Although the extent of temporal and spatial autocorrelation in the CPUE data of the SKT
was greater than that in the FMWT data, again the most supported model was one structured with
only heterogenous variance. The aforementioned conclusions about the role autocorrelation in the
data and the highly variable CPUE catches also apply to the SKT survey data. In contrast to the
FMWT results, the estimated effect of the temperature covariate was greatest among the continuous
covariates modeled and simplest parameterization was favored, which suggests no effects of overall
water depth, tidal cycle, or hour of sampling. Predicted CPUE was highest under the coldest
observed temperatures which occur early in the SKT sampling year and may be related to
aggregation behavior associated with spawning.
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7. Tables

Table 1. Model set fitted to the delta smelt presence-absence and CPUE data for both the FMWT
and SKT surveys.

Model Covariates

M, Year, Temp, EC, Secchi, Tide, Hour, Depth
M, Year, Temp, EC, Secchi, Tide, Hour

M; Year, Temp, EC, Secchi, Tide

My Year, Temp, EC, Secchi

Ms Year, Temp, EC, Secchi, Hour

M Year, Temp, EC, Secchi, Depth

M, Year, Temp, EC, Secchi, Tide, Depth

M; Year, Temp, EC, Secchi, Hour, Depth
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Table 2. Three-fold cross-validation results for the most supported models fitted to the delta smelt

presence-absence data from the FMWT survey. Bold indicates model selected for inference.

Training Error

Testing Error

Model 1 2 3 Avg. 1 2 3 Avg

GLMMmOdel 0.108 | 0.112 | 0.109 | 0.110 | 0.112 | 0.105 | 0.110 | 0.109
6

AM, model

G Mm"de 0.102 | 0.105 | 0.102 | 0.103 | 0.103 | 0.097 | 0.102 | 0.101
1

GEEI’\AmOdel 0.110 | 0.113 | 0110 | 0.111 | 0.112 | 0.106 | 0.110 | 0.109
6

GLMM, 0.111 | 0.114 | 0.111 | 0.112 | 0.113 | 0.107 | 0.112 | 0.111

model Mg

Autocovarlate, | 10116104 | 0103 | 0.103 | 0.106 | 0.099 | 0.013 | 0.102

model Mg
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Table 3. Three-fold cross-validation results for the most supported models fitted to the delta smelt
CPUE data from the FMWT survey. Bold indicates model selected for inference.

Training Error Testing Error
Model 1 2 3 Avg. 1 2 3 Avg.
GLM, 0.83 0.90 0.86 0.86 0.89 0.77 0.81 0.83
model M5
GAM, 0.76 0.83 0.80 0.80 0.82 0.71 0.75 0.76
model Mg
GEE n/a n/a n/a n/a n/a n/a n/a n/a
GLMM, 0.75 0.85 0.79 0.80 0.89 0.67 0.75 0.77
model My
GAMM, 0.84 0.88 0.86 0.86 0.90 0.81 0.85 0.85
model Ms
SAR, 0.78 0.86 0.84 0.83 0.89 0.74 0.79 0.81
model Mg
GLS, 0.84 0.91 0.87 0.87 0.89 0.78 0.84 0.84
model My
GAM., 0.79 0.87 0.84 0.83 0.90 0.76 0.83 0.83
model Mg
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Table 4. Three-fold cross-validation results for the most supported models fitted to the delta smelt

presence-absence data from the SKT survey. Bold indicates model selected for inference.

Training Error

Testing Error

Model 1 2 3 Avg. 1 2 3 Avg
GLMMmOdel 016 | 015 | 016 | 015 | 015 | 016 | 015 | 0.5
1
GAMMmOdel 0.14 | 013 | 013 | 013 | 013 | 013 | 013 | 0.13
1
GEEMmOdel 0.15 | 016 | 015 | 0.15 | 015 | 014 | 016 | 0.15
1
GLMM. 016 | 017 | 016 | 016 | 017 | 014 | 017 | 0.6
model M;
Autocovariae, | o 1 o4 | 013 | 013 | 013 | 013 | 015 | 0.14
model M;
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Table 5. Two-fold cross-validation results for the most supported models fitted to the delta smelt
CPUE data from the SKT survey. Bold indicates model selected for inference.

Model Training error Testing error
GLMMTOdel 1.36 1.62
GAMMTOC[CI 1.05 1.21
GEEI’V[TOC[CI 1.53 1.92

c, »
G | >
SARi\ZOdCI 1.23 1.33
GLSMTOC[CI 1.38 1.64
GAM;ZSmOdel 1.19 1.35
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8. Figures

Fig. 1. Map of sampling locations (gray dots) for a single cruise of the: (A) the SKT survey and (B)
the FMWT survey.
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Fig. 2. FMWT catch summary by sampling Area
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Fig. 3. Proportion of tows conducted annually by the FMWT and SKT where at least one delta
smelt was captured. In general, the FMWT conducts approximately 400 tow per year while the
SKT conducts about 40. Horizontal black lines represent time-series averages.
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Fig. 4. Diagnostics plots associated with the baseline binomial GLM fitted to the FMWT delta smelt
survey data: (A) denotes the binned residuals plot, (B) shows the partial autocorrelation function
results of the raw presence-absence data, (C) shows the partial autocorrelation function of the GLM
model residuals, and (D) displays the spatial correlograms for the raw presence-absence data (black
line) and GLM residuals (gray line). For panels (B) and (C), height of histogram bars above the
dotted lines indicates the presence of temporal autocorrelation, while in panel (D), departures from
the zero line indicate spatial autocorrelation as a function of distance class. P/A refers to presence-

absence.
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Fig. 5. Diagnostics plots associated with the baseline binomial GAM fitted to the FMWT delta smelt
survey data: (A) denotes the binned residuals plot, (B) shows the partial autocorrelation function
results of the raw presence-absence data (same as Fig. 4B, displayed for reference), (C) shows the
partial autocorrelation function of the GAM model residuals, and (D) displays the spatial
correlogram for the raw presence-absence data (black line; same as Fig. 4D, displayed for reference)
and GAM residuals (gray line). For panels (B) and (C), height of histogram bars above the dotted
lines indicates the presence of temporal autocorrelation, while in panel (D), departures from the zero
line indicate spatial autocorrelation as a function of distance class. P/A refers to presence-absence.
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Fig. 6. Plot of annual number of trawl tows conducted (black line) and the annual estimated
effective sample size (Neggg; gray line) derived from the most supported binomial GLMM fitted to
the delta smelt FMWT survey data. Missing years are where there was model convergence issues.
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Fig. 7. Predicted capture probabilities (black lines) and associated estimated coefficients of variation
(gray lines) of delta smelt for the FMWT survey over: (A) year, (B) temperature, (C) specific
conductance, (D) Secchi depth, and (E) overall water depth. Predictions based on the most

supported spatial AUTO model.
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Fig. 8. Diagnostics plots associated with the baseline lognormal GLM fitted to the FMWT delta
smelt CPUE survey data: (A) denotes the plot of residuals in relation to fitted values, (B) shows the
partial autocorrelation function results of the log of the raw CPUE data, (C) shows the partial
autocorrelation function of the GLM model residuals, and (D) displays the spatial correlogram for
the log of the raw CPUE data (black line) and GLM residuals (gray line). For panels (B) and (C),
height of histogram bars above the dotted lines indicates the presence of temporal autocorrelation,
while in panel (D), departures from the zero line indicate spatial autocorrelation as a function of

distance class.
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Fig. 9. Diagnostics plots associated with the baseline lognormal GAM fitted to the FMWT delta
smelt CPUE survey data: (A) denotes the plot of residuals in relation to fitted values, (B) shows the
partial autocorrelation function results of the log of the raw CPUE data (same as Fig. 8B, displayed
for reference), (C) shows the partial autocorrelation function of the GAM model residuals, and (D)
displays the spatial correlogram for the log of the raw CPUE data (black line; same as Fig. 8D,
displayed for reference) and GAM residuals (gray line). For panels (B) and (C), height of histogram
bars above the dotted lines indicates the presence of temporal autocorrelation, while in panel (D),
departures from the zero line indicate spatial autocorrelation as a function of distance class.
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Fig. 10. Predicted CPUE (black lines) and associated estimated coefficients of variation (gray lines)
of delta smelt for the FMWT survey over: (A) year, (B) temperature, (C) specific conductance, (D)
Secchi depth, and (E) Hour of sampling. Predictions based on the most supported heterogeneous

variance GAMM model.
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Fig. 11. Combined predictions (product of binomial and lognormal model components; black lines)
and associated estimated coefficients of variation (gray lines) of delta smelt for the FMWT survey
over: (A) year, (B) temperature, (C) specific conductance, and (D) Secchi depth.
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Fig. 12. Diagnostics plots associated with the baseline binomial GLM fitted to the SKT delta smelt
survey data: (A) denotes the binned residuals plot, (B) shows the partial autocorrelation function
results of the raw presence-absence data, (C) shows the partial autocorrelation function of the GLM
model residuals, and (D) displays the spatial correlograms for the raw presence-absence data (black
line) and GLM residuals (gray line). For panels (B) and (C), height of histogram bars above the
dotted lines indicates the presence of temporal autocorrelation, while in panel (D), departures from
the zero line indicate spatial autocorrelation as a function of distance class. P/A refers to presence-

absence.
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Fig. 13. Diagnostics plots associated with the baseline binomial GAM fitted to the SKT delta smelt
survey data: (A) denotes the binned residuals plot, (B) shows the partial autocorrelation function
results of the raw presence-absence data (same as Fig. 12B, displayed for reference), (C) shows the
partial autocorrelation function of the GAM model residuals, and (D) displays the spatial
correlogram for the raw presence-absence data (black line; same as Fig. 12D, displayed for reference)
and GAM residuals (gray line). For panels (B) and (C), height of histogram bars above the dotted
lines indicates the presence of temporal autocorrelation, while in panel (D), departures from the zero
line indicate spatial autocorrelation as a function of distance class. P/A refers to presence-absence.
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Fig. 14. Plot of annual number of trawl tows conducted (black line) and the annual estimated
effective sample size (Neggg; gray line) derived from the most supported binomial GLMM fitted to
the delta smelt SKT survey data.
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Fig. 15. Predicted capture probabilities (black lines) and associated estimated coefficients of variation
(gray lines) of delta smelt for the SKT survey over: (A) year, (B) temperature, (C) specific
conductance, (D) Secchi depth, and (E) tidal cycle. Predictions based on the most supported
temporal GLMM model.
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Fig. 16. Diagnostics plots associated with the baseline lognormal GLM fitted to the SKT delta smelt
CPUE survey data: (A) denotes the plot of residuals in relation to fitted values, (B) shows the partial
autocorrelation function results of the log of the raw CPUE data, (C) shows the partial
autocorrelation function of the GLM model residuals, and (D) displays the spatial correlogram for
the log of the raw CPUE data (black line) and GLM residuals (gray line). For panels (B) and (C),
height of histogram bars above the dotted lines indicates the presence of temporal autocorrelation,
while in panel (D), departures from the zero line indicate spatial autocorrelation as a function of

distance class.
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Fig. 17. Diagnostics plots associated with the baseline lognormal GAM fitted to the SKT delta smelt
CPUE survey data: (A) denotes the plot of residuals in relation to fitted values, (B) shows the partial
autocorrelation function results of the log of the raw CPUE data (same as Fig. 12B, displayed for
reference), (C) shows the partial autocorrelation function of the GAM model residuals, and (D)
displays the spatial correlogram for the log of the raw CPUE data (black line; same as Fig. 12D,
displayed for reference) and GAM residuals (gray line). For panels (B) and (C), height of histogram
bars above the dotted lines indicates the presence of temporal autocorrelation, while in panel (D),

departures from the zero line indicate spatial autocorrelation as a function of distance class.
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Fig. 18. Predicted CPUE (black lines) and associated estimated coefficients of variation (gray lines)
of delta smelt for the SKT survey over: (A) year, (B) temperature, (C) specific conductance, and (D)
Secchi depth. Predictions based on the most supported heterogencous GLMM model.
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Fig. 19. Combined predictions (product of binomial and lognormal model components; black lines)
and associated estimated coefficients of variation (gray lines) of delta smelt for the SKT survey over:

(A) year, (B) temperature, (C) specific conductance, and (D) Secchi depth.
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