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Preface for Entrainment Study 1 

Prepared by CAMT Delta Smelt Scoping Team 
 

This Preface was prepared by the CAMT Delta Smelt Scoping Team (DSST) to provide context for the 

study presented herein (Entrainment Study 1) which was commissioned by the Collaborative Science 

and Adaptive Management Program (CSAMP) and overseen by the Collaborative Adaptive Management 

Team (CAMT) and the CAMT DSST from March 2015 to October 2017.  The scope of work for the study 

was developed in collaboration with the DSST and subjected to an independent peer review organized 

by the Delta Science Program in 2014.  The DSST was provided regular updates during the conduct of the 

study and provided feedback on modeling inputs and initial results.  The DSST also provided written 

comments on draft versions of various study deliverables. 

This study is one in a series of four separate but related studies intended to examine factors affecting 

the entrainment of adult Delta Smelt at the Central Valley Project (CVP) and State Water Project (SWP) 

water export facilities in the south Delta, and the consequences of that entrainment on the Delta Smelt 

population.  The studies’ respective subjects are as follows: 

• Study 1 – determined factors predicting salvage; 

• Study 2 – developed a behavior model that best explains Delta Smelt movements and entrainment 

into the interior Delta and SWP and CVP facilities; determined behavior-based proportional 

entrainment losses; 

• Study 3 – estimated historical (1981-2016) adult Delta Smelt proportional entrainment loss; and 

• Study 4 – intended to assess the population effects of various levels of adult Delta Smelt 

proportional entrainment loss. 

The study yielded two reports: Review and Basic Exploratory Statistical Analysis of Adult Delta Smelt 

Salvage at the State Water Project and Central Valley Project Fish Facilities produced in July 2015 and 

Re-examining Delta Smelt (Hypomesus transpacificus) Entrainment Dynamics at the Hub of California’s 

Water Supply in the Upper San Francisco Estuary produced in December 2016, as summarized in the 

attached executive summary.  The study also resulted in a manuscript entitled “After the Storm: Re-

Examining Factors that Affect Delta Smelt (Hypomesus transpacificus) Entrainment in the Sacramento 

and San Joaquin Delta”.  The July 2015 report relied on statistical models to explore different factors 

potentially influencing entrainment.  The December 2016 report responded to comments and 

suggestions from the DSST and employed more sophisticated statistical modeling techniques to further 

explain variability associated with various factors and combinations of factors.  

Results from Study 1 were presented to CAMT and the CSAMP Policy Group, with assistance from the 

Delta Science Program in July 2018.  The information presented herein represents the work of the 

independent investigators and does not necessarily reflect the positions of CSAMP member entities. 

 

 

 



Executive Summary 
CAMT Entrainment Study 1 

Prepared by Lenny Grimaldo – Principal Investigator 
 

In response to federal litigation from the 2008 USFWS Delta Smelt Biological Opinion on SWP and 

CVP operations, the Collaborative Adaptive Management Team (CAMT) solicited proposals from our 

investigator team to address two key uncertainties (See CAMT Progress Report and Entrainment Workplan) 

underlying salvage and entrainment: 1) Factors affecting salvage and entrainment; and 2) Population 

consequences of entrainment. In collaboration with the Delta Smelt Scoping Team (DSST), we reviewed 

conceptual models and hypotheses underlying these uncertainties and held several discussions to recommend 

priorities to most effectively meet management objectives. The ultimate goal of these recommendations is to 

support a more confident assessment of Delta Smelt entrainment in order to better evaluate the efficacy of 

management actions used to operate the water projects in a manner that is consistent with the Endangered 

Species Act (ESA). 
 

Our investigator team developed the following studies: 1) An examination of factors affecting salvage 

at the SWP and CVP; 2) An individual-based modeling (IBM) study examining behavior and movement of 

adult Delta Smelt in the south Delta to better understand entrainment timing and population losses; 3) A re-

examination of the historical time series of annual proportional loss estimates; and 4) A re-examination of 

factors affecting population growth rate using updated environmental covariates and proportional loss 

estimates in a published Delta Smelt life cycle model. The last study was not completed by the investigator 

team due to competing professional commitments of key investigators.  

 

 In Study 1, our investigator team explored a number of statistical models and covariates (many not 

considered by previous peer-review publications or by the 2008 Biological Opinion) to examine what factors 

affect salvage of Delta Smelt at SWP and CVP. The team developed three reports that evolved hand-in-hand 

with DSST input and feedback. Initially, the team focused on annual patterns of regression (Report 1) but 

moved to an approach that sought to explain what happens during the onset of first flush conditions (Reports 2 

and 3). Ultimately, a Boosted Regression Tree (BRT) model was applied to SWP and CVP salvage data and 

showed that salvage at each facility was largely explained by the same factors identified in the previous 

reports, but with differences in the order of importance (Report 3). The BRT model explained 85% and 90% of 

the of the variance in salvage data during first flush at CVP and SWP facilities. These are appreciable 

improvements in fit compared to models used for the 2008 USFWS Biological Opinion (and references cited 

within). Therefore, this study contributed to improved understanding of factors that are important to Delta 

Smelt during first flush periods and can be applied to help management of Delta Smelt entrainment risk at 

SWP and CVP.  
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Policy Science Forum Summary 

Factors Associated with Salvage of Adult Delta Smelt 

Prepared by the Delta Science Program 
 

Background  

Published research that led to the 2008 FWS BiOp relied on Old and Middle River flows (OMR) as the 

primary factor affecting adult Delta Smelt entrainment and salvage.  Although turbidity was also 

recognized in the BiOp as an important factor influencing adult Delta Smelt salvage, even the best 

models including OMR and turbidity explained less than 40% of the observed variability* in salvage.  

Delta Smelt salvage models were updated by adding the most recent eight years of data (now spanning 

1993-2016), testing alternative conceptual models, and including a new type of analysis (Boosted 

Regression Tree) to assess the conditions associated with salvage of adult Delta Smelt. Statistical 

approaches developed for this study explained over 85% of the observed variation in salvage and 

explored a greater range of hydrodynamic conditions.   

Results 

What did we learn about the factors that affect entrainment?  

Several different models were tested, included some that treated SWP and CVP separately, as well as 

some that associated factors with entrainment based on the conditions during first flush, rather than 

the entire season (Dec 1 to March 30). Here, first flush is defines as Dec 1 to the day 50% of the salvage 

for the year had been reached. 

 

• Factors affecting salvage at SWP and 

CVP differ, suggesting slightly different 

mechanisms at play. See the relative 

influence of each factor in the box. 

 

• The models show small differences in 

the importance of factors affecting 

salvage during first flush versus factors 

affecting salvage for the entire time 

series—suggesting that management 

during first flush is critical for affecting 

salvage during the entire season.  
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What did we learn that could help us manage entrainment better?  Information generated from this 

study reinforces and builds upon results of previous work suggesting adult Delta Smelt entrainment risk 

can be assessed and managed using a combination of factors. Consistent with prior analyses, exports 

and/or OMR (i.e., hydrodynamics) have high explanatory power, as does turbidity, but so does previous 

Fall Midwater Trawl index (abundance), precipitation, and river flows. Small differences were observed 

when comparing factors associated with entrainment at each facility as well as modeling based on first 

flush or the whole entrainment season. 

Does the new analysis allow us to establish new standards for periods of higher and lower 

entrainment risk, different from those set in the BiOp? Thresholds for high and low entrainment risk 

are difficult to define, though model output from this study could assist in developing thresholds. The 

subjective nature of the question of appropriate thresholds is beyond the scope of the researchers, and 

would have to be the product of a dialogue between scientists and decision makers.  

Can a model that predicts salvage based on conditions be made? To make a “near real-time” prediction 

tool, daily monitoring data would have to be used as input. Models to predict entrainment risk in near 

real-time did not perform adequately. It is hard to predict salvage when only a few daily observations 

are recorded in a year (using the post-POD years). So initial efforts using the models to predict salvage 

were not successful.  

Even though the models did not have predictive power, conditions associated with historic salvage were 

still identified. The single most important predictor of salvage is the population size (FMWT index). Also, 

a look-up table was developed identifying the relative entrainment risk of various combinations of the 

levels of key system conditions. 

What tool was expected to be the result of the investigation?  

A highly desirable out come this investigation would have been a model for forecasting salvage in “near 

real-time.” Although, initial attempts to apply the boosted regression tree model to forecast Delta Smelt 

salvage were not fruitful, a look-up table to assist in identifying times of increased and decreased 

entrainment risk under different conditions were created from BRT results. 

How can this information be used? The entrainment risk look-up table could be useful to the Smelt 

Working Group, by providing a risk assessment of entrainment under current and projected conditions, 

which will be useful in developing their water operations and related fish monitoring recommendations.  

Future work 

Factors associated with Salvage. These studies could provide the Delta Smelt science community with a 

framework for developing AM experiments to test hypotheses about DS entrainment. For example, 

releasing tagged adult smelt during varying first flush conditions could be used to determine the rate 

and direction of fish move in the south Delta. These studies could also help further quantify pre-screen 

loss rates for fish entrained into Clifton Court Forebay, and further understand how those rates are 

influenced by export levels and other factors. The tagging studies might also better quantify loss rates in 

the channels leading to the SWP and CVP during first flush periods (relative to other areas of the delta) 

akin to research that has been done for salmonids in the estuary.  
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Early Product # 1 to the Collaborative Adaptive Management Team: Review and Basic 

Exploratory Statistical Analysis of Adult Delta Smelt Salvage at the State Water Project 

and Central Valley Project Fish Facilities 

 

Authors: Entrainment Investigator Team 

Date: 6/16/2015 

 

Executive Summary: This memo presents an exploratory analysis of the adult Delta 

Smelt salvage data conducted in four steps.  In Step 1, we qualitatively examined daily salvage 

and concurrent environmental/operational conditions in the South Delta to search for general 

patterns of interest.  In Step 2, we considered appropriate time scales for exploratory statistical 

analysis and documented the covariation between covariates (predictors of salvage) averaged 

across different time periods, and the covariation among candidate predictor and response 

variables.  In Step 3, we tested numerous alternative ways of explaining adult Delta Smelt 

salvage using the covariates from Step 2.  In Step 4, we demonstrated why currently available 

data cannot robustly address the hypothesis that entrainment of adult Delta Smelt has impaired 

population viability – at least since 2003.  Regarding this last point, we note that (i) it has never 

been a stated goal of the U.S. Fish and Wildlife Service (FWS) that its Incidential Take 

Statements (ITS) represent a level of entrainment beyond which population viability would be 

impaired, and (ii) ongoing work by Ken Newman (FWS) and this Investigative Team should 

provide additional scientific insight into the issue of whether the entrainment of adult Delta 

Smelt measurably affects the species’ viability. 

 

 

Introduction 

 

The CAMT Delta Smelt Entrainment Study Proposal for Study Element 1, Examining the factors 

that affect the magnitude, timing, and duration of adult delta smelt salvage at the SWP and CVP 

Fish Facilities: identifying thresholds that define low and high risk entrainment conditions 

proposed to address four study questions posed to the Investigator Team by the Delta Smelt 

Subteam (DSST). 

• Is there a relationship between Delta Smelt distribution and habitat conditions (e.g., 

turbidity, X2, temperature, food) during fall and subsequent distribution and associated 

entrainment risk in winter? 

 

• What factors affect Delta Smelt entrainment during and after winter movements to 

spawning areas? 
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• How should winter “first flush” be defined for the purposes of identifying entrainment 

risk and managing take of Delta Smelt at the south Delta facilities? 

 

• What habitat conditions (e.g., first flush, turbidity, water source, food, time of year) lead 

to adult Delta Smelt entering and occupying the central and south Delta? 

 

This memo presents an exploratory analysis of the adult Delta Smelt salvage data that 

addresses some of all four questions above, but is unlikely to represent a “final answer” for any 

of them. Our analysis was conducted in four steps.  In Step 1, we qualitatively examined daily 

salvage and concurrent environmental/operational conditions in the South Delta to search for 

general patterns of interest.  In Step 2, we considered appropriate time scales for exploratory 

statistical analysis and documented the covariation between covariates (predictors of salvage) 

averaged across different time periods, and the covariation among our different predictor and 

response variables.  In Step 3, we tested numerous alternative ways of explaining adult Delta 

Smelt salvage using the covariates from Step 2.  In Step 4, we demonstrated why currently 

available data cannot robustly address the hypothesis that entrainment of adult Delta Smelt has 

impaired population viability – at least since 2003.  Regarding this last point, we note that (i) it 

has never been a stated goal of the U.S. Fish and Wildlife Service (FWS) that its Incidential Take 

Statements (ITS) represent a level of entrainment beyond which population viability would be 

impaired, and (ii) ongoing work by Ken Newman (FWS) and this Investigative Team should 

provide additional insight into the issue of whether the entrainment of adult Delta Smelt 

measurably affects the species’ viability. 

 

Overarching conceptual model of how and why adult Delta Smelt become entrained 

 

Some aspects of the study questions provided to us can be addressed using available 

published information because the scientific specificity regarding several details of Delta Smelt 

habitat use has grown considerably during the past ten years.  This section summarizes that 

newer understanding in a defensible conceptual model of how and why adult Delta Smelt end up 

salvaged at the State Water Project (SWP) and Central Valley Project (CVP) fish facilities.  Both 

maturing juvenile and adult Delta Smelt are strongly affiliated with turbid water (Feyrer et al. 

2007; 2013; Bennett and Burau 2014).  Delta Smelt’s winter movements are facilitated by tidal 

surfing; specifically, Delta Smelt use behaviors that keep them associated with the tidal and 

advective movements of turbid water (Feyrer et al. 2013; Bennett and Burau 2014).  Delta Smelt 

move in response to winter freshets1 that increase turbidity and decrease salinity in the upper 

estuary; specifically, Delta Smelt habitat expands and so the fishes’ distribution expands with it.  

The details of Delta Smelt’s movements are the subject of a current scientific debate in the peer-

reviewed literature, i.e., during these winter freshets are Delta Smelt “migrating,” or not 

 
1 Increases in freshwater flow caused by storms 



 

3 | P a g e  
 

(Sommer et al. 2011; Murphy and Hamilton 2013)? Thus, there has been a recent effort to 

understand how Delta Smelt move at tidal time scales (Feyrer et al. 2013; Bennett and Burau 

2014).  However, all of the authors listed above recognize that Delta Smelt expand their spatial 

distribution in response to winter flows and do so by tracking the spatial expansion of turbid 

fresh water in the system.  Thus, Delta Smelt can move quickly in any compass direction that the 

fish find suitable at the time they decide to move.  The primary difference between newer 

publications and older papers is that older papers suggested that Delta Smelt had a very gradual 

“diffuse” migration starting in fall (Bennett 2005) or spring (Moyle et al. 1992) that was not 

explicitly associated with changing water quality conditions. 

 

Adult Delta Smelt can get entrained when they expand their distribution into the southern 

portion of the Delta when they follow the tidal and advective movements of turbid water into this 

region (Grimaldo et al. 2009).  Exports have little effect on the tidal dispersion of turbidity in 

most of the estuary (Schoellhamer 2002; McKee et al. 2006); however, the operation of the Delta 

Cross Channel gates, and the magnitude of water exports relative to seasonal river inflows, exert 

some influence on the dispersion of turbid water (and Delta Smelt that happen to surf with it) 

into the southern Delta because these water project operations affect the flow of Sacramento and 

San Joaquin river water into and through the southern Delta (e.g., Arthur et al. 1996; Monsen et 

al. 2007; Kimmerer and Nobriga 2008).  This is the basis of any conceptual model that assumes 

there is a mechanistic reason why adult Delta Smelt salvage increases when Old and Middle 

River (OMR) flows are negative and turbidity is high (e.g., Kimmerer 2008; Grimaldo et al. 

2009). 

 

The questions posed to our Investigator Team also expressed interest in how factors like 

water temperature and predator-prey dynamics involving Delta Smelt might also affect their 

vulnerability to entrainment.  Peak Delta Smelt spawning occurs in association with water 

temperatures that most frequently occur during the spring (Bennett 2005; Rose et al. 2013a).  

However, most of the salvage of adult Delta Smelt happens during the winter (Grimaldo et al. 

2009).  Therefore, the majority of adult Delta Smelt salvage cannot be related to spawning per 

se.  Exploratory analyses (not shown) found no indication that water temperatures have any 

influence on adult Delta Smelt salvage, which is consistent with previous studies (Grimaldo et al. 

2009), so there is no further mention of water temperature in this memo. 

 

The low-salinity zone rearing habitats often used by maturing juvenile Delta Smelt were 

once a productive fish nursery – particularly in the vicinity of Suisun Bay and Marsh.  However, 

the productivity of this area has been substantially degraded by overbite clam grazing (Alpine 

and Cloern 1992; Feyrer et al. 2003; Kimmerer and Thompson 2014) and likely other limiting 

factors like chemical inhibition of diatom growth rates (Dugdale et al. 2013) and water 

diversions (Jassby and Powell 1994; Jassby et al. 2002).  These ecological changes have left only 

a few (comparatively) productive habitats in the upper estuary: Napa River marshes (Cohen and 
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Bollens 2008), Suisun Marsh (Mueller-Solger et al. 2002; Hobbs et al. 2006), the Yolo Bypass 

(when it drains floodwaters; Mueller-Solger et al. 2002; Sommer et al. 2004), and parts of the 

southern half of the Delta (Lucas et al. 2002; Nobriga et al. 2005).  The ability of Delta Smelt to 

use these few remaining comparatively productive habitats is often limited by physical and water 

quality conditions; e.g., the Yolo Bypass dries up, salinity is often too high in Napa River (Hobbs 

et al. 2007), and can be too high in parts of Suisun Marsh, and water temperature and 

transparency are often too high in the southern Delta (Feyrer et al. 2007; Nobriga et al. 2008). 

 

During fall through the subsequent spring, Delta Smelt eat a wider variety of prey types 

than younger life stages (Lott 1998; Slater and Baxter 2014).  These include planktonic 

crustaceans and larval fishes, and noteworthy proportions of benthic or epibenthic crustaceans as 

well.  It is unknown whether the latter are eaten by Delta Smelt foraging near the bottom of the 

water column or taken incidentally when they are displaced (or migrate; Kimmerer et al. 2002) 

up into the water column.  Regardless, available monitoring information cannot be used to fully 

characterize prey availability to adult Delta Smelt because no single survey method can capture 

all of the major prey categories consumed, and data on the potential prey field are not available 

at time scales relevant to winter dispersal of Delta Smelt.  However, a recent life cycle model did 

use predator-prey theory and bioenergetics modeling to develop a food availability model that 

the authors applied to adult Delta Smelt (Rose et al. 2013a).   

 

Parts of the southern Delta have high phytoplankton production (Lucas et al. 2002; Jassby 

2008) and comparatively high fish biomass (Grimaldo et al. 2004; Nobriga et al. 2005).  Thus, it 

is possible that Delta Smelt dispersing into the San Joaquin River during winter freshets are able 

to take advantage of elevated prey availability; however, this hypothesis has not been tested.  In 

other words, it is not known whether Delta Smelt using the San Joaquin River or its distributary 

channels prior to spawning receive an energetic benefit that is not realized by fish rearing 

elsewhere in the estuary.  Because this hypothesis has not been tested, we cannot evaluate it at 

this time.  As a result, this initial product for the CAMT follows several other prior analyses of 

salvage data in that it focuses on a few environmental/operational covariates for the South Delta 

that are known to be mechanistically associated with the salvage of adult Delta Smelt. 

 

 

Overview of factors that decouple salvage from entrainment 

 

The salvage of Delta Smelt at the CVP and SWP fish facilities in the southern Delta is the 

most apparent form of incidental take involving the operations of these water projects because it 

is the only Project take that is observed and recorded.  People naturally focus on salvage because 

they can “see” it.  Therefore, it is not surprising that water management strategies designed to 

protect Delta Smelt have long focused on understanding this particular source of loss by 
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experimenting with water operations to learn how to minimize Delta Smelt salvage in a manner 

that minimizes water supply disruption (Nobriga et al. 1999; 2000; Poage 2004; Hymanson and 

Brown 2006; Brown et al. 2009). 

 

The CVP and SWP fish facilities attempt to separate fish from water diverted out of the 

Delta before the water gets pumped into these systems’ aqueducts (Brown et al. 1996).  Louver 

systems guide fish into the fish facilities where they are collected on smaller-meshed fish 

screens, placed into trucks and released back into the Delta at release sites along the Sherman 

Island levees.  The salvage of fish is imperfect - particularly for small-bodied fishes.  Thus, fish 

salvage represents a variable and unquantified fraction of the fish that were actually entrained in 

the diverted water (Brown et al. 1996; Kimmerer 2008; Castillo et al. 2012).  The fish facilities 

staff record subsamples of the fish they collect and the counts are expanded into estimates of the 

daily salvage of each fish species.  For Delta Smelt, these daily expanded salvage counts are 

available dating back to 1980 but the counts are considered more accurate since QA/QC 

procedures were standardized in 1993 (Grimaldo et al. 2009).  Therefore, this memo only uses 

data for water years 1993-2014. 

 

All three FWS Biological Opinions for the Coordinated Operations of the CVP and SWP 

(issued in 1995, 2005, and 2008, respectively), have developed an ITS based on summaries of 

daily expanded Delta Smelt salvage.  By doing so, FWS made the explicit assumption that 

salvage is a reasonable proxy for entrainment.  Delta Smelt embryos hatch into circa 5-mm 

larvae and the minimum fish size recorded at the fish facilities is 20 mm, so there cannot be any 

relationship at all between salvage and entrainment of larval Delta Smelt (Kimmerer 2008).  The 

number of Delta Smelt salvaged at the fish facilities peaks at a length of about 30 mm, so there 

must still be considerable decoupling between the entrainment and salvage of Delta Smelt 

between 20–30 mm in size.  However, most adult Delta Smelt are salvaged during the winter 

(between mid-December and March), and are greater than 50 mm long (Figure 1).  Therefore, 

adult Delta Smelt are large enough to be screened and counted.  The primary factors that might 

decouple entrainment and salvage of adult Delta Smelt are: predation in front of the fish 

facilities, and louver efficiencies that vary with pumping operations.  Regarding the former, there 

is a commonly held belief that mortality rates of fish are higher in front of the SWP than the 

CVP fish facilities due to differences in “pre-screen loss2” because entrained fish have to traverse 

Clifton Court Forebay to reach the State’s fish facility.  Castillo et al. (2012) estimated that the 

pre-screen mortality rates for several experimental groups of Delta Smelt released into Clifton 

Court Forebay were circa 90-100 percent.  This suggests that over a time scale of about 1 day to 

1 week, even the salvage of Delta Smelt greater than 30 mm long may be highly decoupled from 

their actual entrainment.  However, we provide evidence in this memo that over longer time 

 
2 Pre-screen loss is used as a catch-all phrase for mortality of fishes that occurs prior to the attempts to collect them 

at the fish facility screens.  It is generally assumed that predation – particularly predation by striped bass residing in 

the forebay, and to lesser extent in front of the CVP fish screens, is the major source of pre-screen loss. 
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scales, the salvage of adult Delta Smelt is correlated with their relative abundance, and as such, 

salvage must also be a proxy for entrainment. 

 

 

 

Figure 1. Boxplots summarizing monthly length measurements in millimeters of adult Delta Smelt taken at 

the State Water Project (SWP) and Central Valley Project (CVP) fish facilities (Skinner and TFCF 

respectively).  Panels extracted from a Figure made by Ken Newman, USFWS.  The numbers along the upper 

borders of each panel are the numbers of fish measured for fork length. 

 

 

Methods 

 

Step1 – Visual analysis of adult Delta Smelt salvage time series plots: We generated time series 

plots of adult Delta Smelt salvage and a concurrent index of south Delta conditions for each of 

the 22 water years 1993-2014.  We used the plots to get a ‘big picture’ view of trends in the data, 

quantity of missing data, etc.  In particular, we were evaluating how closely increases in salvage 

tracked changes in the conditions index described below (which directly addresses the third 

question posed to our Team) and we looked closely for situations where the conditions index 

changed enough to appear to change the rate of salvage so that we could describe the magnitude 

of those changes.  The vast majority of adult Delta Smelt salvage has occurred between 

December 1 and March 31 in most years; after March, the salvage data begin to include and then 

become dominated by Age-0 Delta Smelt (Grimaldo et al. 2009).  Based on this fairly consistent 

seasonal timing, we plotted data for December 1 (day 1) through March 31 (day 121 or 122 

depending on leap years) of each water year, which is consistent with the time period analyzed 

by FWS in its 2008 BiOp. 

The CVP and SWP fish facilities are located only about two miles from each other, but 

they sample water that differs in its fractional contributions from the Sacramento and San 

Joaquin rivers (Arthur et al. 1996).  Each fish facility can be thought of as a large pump sampler, 

i.e., a type of fish sampling “gear”.  It is standard in fisheries science to correct fish catches for 

the amount of effort expended.  In other words, to convert catch into catch per unit effort 
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(CPUE), which for the fish facilities is two-factored:  (i) the amount of water exported, and (ii) 

the number and duration of salvage counts each day.  The salvage data come corrected for the 

latter as expanded salvage.  We corrected for the former by dividing daily salvage by daily 

exports at each facility.  In Step 1, we plotted daily adult Delta Smelt salvaged · 10,000 m-3 of 

water exported, as an estimate of CPUE.  We generated separate CPUEs for the SWP and CVP 

fish facilities.  This conversion put Delta Smelt salvage into the same units that CDFW uses in its 

Spring Kodiak Trawl Survey (SKT) (https://www.wildlife.ca.gov/Regions/3). 

We plotted daily salvage density separately for each fish facility as an accumulating total. 

SDcum = SDi + ƩSD1…i-1         (1) 

In equation 1, SDcum is the cumulative salvage density through day i, SDi is the salvage density 

on day i, and ƩSD1…i-1 is the sum of daily salvage densities for the water year on all days prior to 

day i; SDcum reaches its final value for the year by day 121 or 122 (if not sooner).  Note that these 

accumulated salvage densities are mathematical analogs to the trawl-based abundance indices 

calculated by CDFW.  Therefore the March 31 value for each water year can be taken as an 

‘abundance index’ of Delta Smelt based on ‘sampling’ conducted by the fish facilities. 

Ken Newman (USFWS Mathematical Statistician) also recommended that instead of 

SDcum, we use a salvage CPUE calculated as the December 1 – March 31 salvage total divided by 

the December 1 – March 31 export total.  However, we did not do that because (i) raw salvage 

(S) and SDcum are very highly correlated (see Step 2 Results), and (ii) the SDcum and the 

alternative version suggested by Newman are likewise highly correlated, though the slopes of the 

relationships differ dramatically between the two fish facilities (Figure 2).  The very high 

correlations among these alternatives led us to believe that the use of SDcum was a sufficient 

contrast to analyses based on raw salvage. 

 

https://www.wildlife.ca.gov/Regions/3
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Figure 2. Scatterplots of two alternative versions of log10-transformed SWP and CVP salvage “abundance 

indices” for adult Delta Smelt.  The constant 1 was added to the SWP indices before log-transformation 

because SWP salvage of adult Delta Smelt was zero in 2007 and 2011.  The values of the x-axis are daily 

salvage per 10,000 m3 summed for the period December 1 – March 31 of water years 1993-2013.  The values 

for the y-axes are the sum of December 1 – March 31 salvage divided by the sum of December 1 – March 31 

exports (in units of 10,000 m3), for the SWP and CVP fish facilities, respectively. 

 

As reported previously (e.g., Grimaldo et al. 2009; Deriso 2011), adult Delta Smelt 

salvage is often associated with a combination of negative OMR flows and the dispersal of turbid 

water into the southern Delta during a “first flush3” generated by increased runoff during winter 

storms. 

FFd = OMRd · NTUd           (2) 

In equation 2, FFd represents the South Delta conditions index alluded to above. It is the product 

of OMRd, the sum of daily tidally-filtered flows in Old and Middle rivers, and NTUd, the daily 

average turbidity measured at Clifton Court Forebay in nephelometric turbidity units (NTU).  It 

was easy to see missing data using this construct because equation 2 is a product of two data sets, 

thus any day that is missing data from either data set has a value of zero.  We received a 

 
3The term “first flush” describes high river flow that follows the first major storm of the year, which often transports 

a large fraction of suspended sediment delivered to the Delta in any given year (Bergamaschi et al. 2001). 
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complete estimated daily OMR data set from Pete Smith in February 2015, so any missing values 

in FFd are due to missing turbidity data.  For the sake of argument, and to create a common set of 

graphical axes, we considered FFd lower than negative 100,000 to be a general indicator of ‘first 

flush’ conditions dispersing into the southern Delta .  This chosen threshold is arbitrary, but 

based on visual examination of all 22 plots. 

 We used graphical summaries to compare the CPUEs at the two fish facilities (SDcum) and 

to compare CPUEs between the fish facilities and the SKT.  We plotted the cumulative 

distribution of non-zero CPUEs at each fish facility and compared these qualitatively to the non-

zero and mean south Delta CPUEs from the SKT. 

 

Step 2 – Analysis to support choosing explanatory variables for Step 3: The 

hydrodynamic influences of water project operational decisions and natural inflow events on 

conditions in the estuary are time-dependent (Kimmerer and Nobriga 2008; Sommer et al. 2011).  

Previous evaluations of the adult Delta Smelt salvage data have been plotted and/or statistically 

analyzed at daily to seasonal time steps (Kimmerer 2008; Grimaldo et al. 2009; Deriso 2011; 

Manly unpublished; MWD 2014).  Note that in the case of adult Delta Smelt, analysis of the data 

at a seasonal time scale is approximately equivalent to an annual time scale analysis because the 

vast majority of adult Delta Smelt salvage now occurs during a few months of the year in the 

winter (Grimaldo et al. 2009) because the southern Delta has become seasonally uninhabitable 

over time (Feyrer et al. 2007; Nobriga et al. 2008). 

Management applications, including the potential for operational flexibility, are a key 

desired outcome of this investigation so new approaches might be best informed by short time 

scale analyses.  Plots of the data on a daily time step are useful for visualizing general patterns.  

However, valid statistical analysis of the data at a daily time step is extremely problematic and 

therefore, we have not attempted such an analysis at this time.  We may do so later pending the 

outcomes of the other elements of this investigation.  The biggest problem with trying to 

statistically analyze the salvage data at a daily time step is that salvage (or lack of salvage) of 

Delta Smelt on any given day (n) is correlated with the salvage (or lack of salvage) on the prior 

day (n – 1) and likely to be correlated at multiple time lags (e.g., n – 2, n – 3, etc.) because daily 

salvage is also mechanistically linked to environmental/operational conditions occurring both 

during and prior to the observed salvage – again, likely at multiple lagging time steps.  This 

multifaceted temporal autocorrelation in the data is apparent in the ‘contrails’ made by certain 

groups of data points in plots of daily salvage vs OMR (Figure 3).  Therefore, if an investigator 

wanted to link daily salvage to environmental/operational conditions in a statistically defensible 

manner, they would first need to account for the daily and longer time scale autocorrelation in 

the salvage data and then find an objective way to link the left over variation in daily salvage to 

environmental/operational conditions potentially over yet another different time scale(s).  Of 

itself this would be exceedingly difficult.  The fact that a lot of key daily environmental and 
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salvage data are missing, renders this approach inadvisable without assistance from validated 

particle tracking models that we will develop as part of this project. 

 

 

Figure 3. Recreation of Figure 3 from Deriso (2011; January 28, 2011 Declaration in support of Plaintiffs’ 

request for injunctive relief in the delta smelt consolidated cases; court document # 772); however, unlike in 

the cited document, days with positive OMR flow were also included.  The x-axis is average turbidity (NTU at 

Clifton Court Forebay) for three days prior to the daily salvage and the y-axis is the daily net flow in Old and 

Middle rivers (OMR) on the day of salvage.  The blue datapoints are daily salvage of adult Delta Smelt 

normalized to the Fall Midwater Trawl abundance index; the larger the data point, the higher the salvage 

relative to population size.  Red data = no salvage on that day.  Time period plotted is December 1 – March 

31, 1988-2009. 

 

We did not summarize or analyze the salvage data at a monthly time step because many 

salvage events have straddled two or more calendar months.  Thus, breaking these events into 

separate monthly averages could misrepresent the event both by parsing it and by including 

environmental data in calculations of monthly average conditions that had nothing to do with the 

salvage event.  Thus, in Step 2, we compare seasonally-averaged covariates to alternative event-

averaged covariates in an attempt to generate a maximum amount of contrast between short- and 

long time scale summaries of environmental/operational conditions in the southern Delta.  In 

other words, our intent was to see whether we could generate statistically independent versions 
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of some of our covariates by using event (5-day average) versus long (121-122 day average) 

versions.  We compared the covariation among alternative covariates (e.g., OMR versus 

turbidity), covariates across time scales (e.g., event OMR versus seasonally-averaged OMR), and 

among different versions of response variables (e.g., raw salvage (S) versus salvage CPUE 

(SDcum)).   

The rationale for developing and exploring event-averaged covariates was that it seems 

likely that environmental/operational conditions occurring during the accelerating part of the 

seasonally accumulating salvage are the conditions that best represent what actually caused the 

fish to occupy nearby channels in the south Delta from where they could be entrained (e.g., 

question 4).  During the decelerating part of seasonally accumulating salvage, it seems likely that 

salvage is less connected to concurrent operations than with whether Delta Smelt had already 

occupied habitats near the SWP and CVP facilities.  The event-averaged covariates are the 

lowest 5-day average OMR, the lowest 5-day average FFd, and the highest 5-day average 

turbidity at Clifton Court Forebay that occurred in the 31 days prior to and including the day that 

adult Delta Smelt salvage exceeded its 50th percentile for each water year (Table 1).  The choice 

of 31 days was arbitrary in that it represented one full calendar month, which may have no 

biological meaning.  However, it was long enough to encompass the range of migration 

(dispersal) estimates generated by Sommer et al. (2011), which are the only available estimates.  

After SDcum reaches its 50th percentile for the water year, the rate of salvage is slowing or 

decelerating.  Thus, the event-averaging periods are very short time scale averages that differ 

among facilities and water years because they reflect differences in the timing of salvage among 

facilities and water years.  In contrast, the seasonally averaged covariates reflect the same time 

period every year (conditions averaged for December 1 – March 31) and therefore the same 

values are applied to predict salvage at both fish facilities.  Like the analysis for Step 1, the 

analysis for Step 2 was qualitative – we generated scatterplots of candidate covariates and 

response variables so that we could assess whether they were correlated.  This step helped us 

properly set up and interpret the quantitative results in Step 3. 
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Table 1. Summary of covariate values used in Steps 2 and 3 of this memo.  N/A = not applicable because event averages cannot be generated when no 

salvage of adult Delta Smelt occurred.  The season averages of the first flush index can be derived by multiplying season average OMR flow by season 

average turbidity; the event first flush indices do not necessarily correspond to the same day as minimum OMR flow or maximum turbidity and so their 

values are provided in the table. 

   State Water Project  Central Valley Project  

Water Year Season 

average 

OMR 

Season 

average 

turbidity 

Event 

average 

OMR 

Event 

average 

turbidity 

Event 

average 

first flush 

index (in 

thousands) 

Event 

average 

OMR 

Event 

average 

turbidity 

Event 

average 

first flush 

index (in 

thousands) 

1993 -5369 11.6 -8498 33.6 -276 -9300 25.7 -204 

1994 -4742 12.8 -5343 15 -75 -5343 15 -71 

1995 -3145 7.55 -8894 21.1 -169 -8894 21.1 -169 

1996 -1281 9.57 -8446 8.2 -65 -8446 8.2 -65 

1997 10376 28.1 7210 48.4 +40 3999 48.4 +40 

1998 2103 22.1 -8992 19.9 -179 6188 44.6 +97 

1999 -760 14.5 -731 31.3 -13 -3855 31.3 -62 

2000 -5282 19.7 -8892 49.4 -331 -8892 49.4 -331 

2001 -5681 13.8 -6894 33.3 -161 -7660 33.3 -161 

2002 -7731 14.3 -10362 32.5 -232 -10362 33.3 -232 

2003 -8185 17.0 -9546 30.5 -265 -9236 30.5 -265 

2004 -8080 15.0 -10118 22.9 -198 -10118 22.9 -198 

2005 -5525 23.0 -9462 55.1 -343 -9462 55.1 -343 

2006 -2954 14.8 -9302 25.8 -175 -6742 15.3 -80 

2007 -5462 8.50 N/A N/A N/A -4734 10.5 -46 

2008 -3728 21.6 -5062 57.8 -203 -5062 57.8 -203 

2009 -2991 9.24 -5296 11.8 -62 -3734 9.9 -31 

2010 -4382 13.6 -5566 18.9 -102 -5566 28.5 -103 

2011 -4130 23.2 N/A N/A N/A -5010 28.9 -124 

2012 -4525 9.47 -5066 12.5 -40 -5162 10 -44 

2013 -3575 13.8 -3524 32.5 -66 -6208 32.5 -101 

2014 -2172 9.93 N/A N/A N/A N/A N/A N/A 
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Step 3 – Basic statistical analysis of factors influencing adult Delta Smelt salvage: We wanted to 

keep things simple for this initial product so we used linear regression analyses in an 

information-theoretic approach to test numerous alternative hypothesized relationships between 

adult Delta Smelt salvage, abundance indices, and environmental/operational covariates.  We 

used linear regression because it is a statistical tool that most people are familiar with, and we 

performed a lot of individual tests to evaluate whether this line of inquiry is sufficient to increase 

the understanding of adult Delta Smelt salvage (and by extension, entrainment) beyond the 

currently published state of science (i.e., Grimaldo et al. 2009). 

The basic approach was to start with several alternative base models (equations 3-4 

below), then add covariates (predictor variables) to the base models to see whether the covariates 

made for a better model.  The base models represent alternative ways to test the assumption that 

the relative abundance of adult Delta Smelt in the ecosystem predicts adult Delta Smelt salvage.  

All hypothesis tests were performed separately for the SWP and CVP data to see whether the 

same models provided the best predictions of salvage at both fish facilities.  We did this because 

all authors cited above have analyzed combined salvage (SWP + CVP) and in so doing have 

assumed a priori that the same factors affect the salvage of Delta Smelt at both locations.  We 

wanted to determine whether that assumption was supported by the data.  The variables in 

equations 3 and 4 were log10-transformed before the analysis.  The constant 1 was added to the 

SDcum and S data before log-transformation because the log of zero is mathematically undefined. 

 

SDcum ~ FMWT + ε          (3) 

S ~ FMWT + ε           (4) 

 

In equation 3, SDcum is defined as it was in equation 1.  In equation 4, S is the sum of 

December 1 – March 31 expanded salvage.  In equations 3 and 4, FMWT is the Fall Midwater 

Trawl index for the same water year (sometimes called “prior FMWT index” because it is 

recorded for the calendar year prior to the water year in which it is mostly encompassed), and ε is 

the standard least squares error estimates in the regression parameters.  In all, there were four 

base models: two equations * two fish facilities. 

We performed each of the following linear regression tests for each fish facility.  For 

equations that include the terms OMR, NTU, or FF, these were also tested separately using 

seasonally-averaged and event-averaged versions of those covariates. 

 

SDcum ~ FMWT + NDOI + ε         (5) 
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SDcum ~ FMWT + OMR + ε         (6) 

SDcum ~ FMWT + NTU + ε         (7) 

SDcum ~ FMWT + FF + ε         (8) 

SDcum ~ FMWT + OMR + NTU + ε        (9) 

SDcum ~ FMWT + NDOI + OMR + NTU + ε       (10) 

 

S ~ FMWT + NDOI + ε         (11) 

S ~ FMWT + E + ε          (12) 

S ~ FMWT + OMR + ε         (13) 

S ~ FMWT + NTU + ε          (14) 

S ~ FMWT + FF + ε          (15) 

S ~ FMWT + OMR + NTU + ε        (16) 

S ~ FMWT + NDOI + OMR + NTU + ε       (17) 

S ~ FMWT + E + NTU + ε         (18) 

S ~ FMWT + NDOI + E + NTU + ε        (19) 

 

NDOI is a variable inspired by Grimaldo et al. (2009) based on DAYFLOW’s Net Delta Outflow 

Index (NDOI); specifically it is log10(absolute value(mean December NDOIi – the water year 

1993-2014 median of mean December NDOI)).  This variable has minimum values when 

December Delta outflow in year i was near the long-term median and higher values when it was 

higher or lower than the long-term median.  The variable was intended to test the hypothesis that 

adult Delta Smelt salvage has a spatial influence that is affected by Delta outflow or X2 in the 

period right before winter dispersal (question 1).  Specifically, the conceptual model is that Delta 

Smelt salvage has been highest when flows prior to dispersal were of intermediate magnitude 

because very high flows largely disperse the population seaward of the Delta, limiting 

entrainment, and very low flows are associated with low turbidity so the population tends to not 

enter the southern half of the Delta where water clarity and entrainment risk are highest.  Thus, 

we expected to see an inverse correlation between NDOI and S (or SDcum). 

OMR is the seasonal or event-averaged OMR flow (expected relationship = inverse), 

NTU is the seasonal or event-averaged turbidity at Clifton Court Forebay (expected relationship 
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= positive), and FF is the seasonal or event averaged conditions index defined as it was in 

equation 2 (expected relationship = inverse).  E is the sum of exports for December 1 – March 31 

of each water year (in m3), calculated separately for the SWP and CVP.  Project exports were 

only used as a covariate of raw salvage (S) because exports were ‘built into’ SDcum.  We did not 

include any analyses that included E and OMR in the same regression because these variables are 

correlated (see Results for Step 2). 

Often in linear regression, the more covariates (predictor variables) that are used, the 

more total variation in a relationship is explained.  In an attempt to account for this, statistical 

software often outputs an adjusted R2 that penalizes the model for having increasing numbers of 

terms.  However, this is not considered an adequate penalty anymore.  As mentioned above, we 

used the information-theoretic approach originally proposed by Burnham and Anderson (1998) 

to guide our analysis in Step 3 because it provides a more robust way to determine whether an 

additional covariate or covariates are legitimately explaining enough additional variance to 

warrant keeping them as predictors.  The information-theoretic approach is a fancy way of 

saying that we used AICc
4 in addition to P-values and adjusted R2 as indicators of whether one 

linear regression model was ‘really’ better than an alternative one.  This process is 

straightforward.  You start with a base model and calculate its AICc.  Then you add a covariate 

or covariates plural, and recalculate the AICc.  The general guideline is that if the AICc of the 

second model is more than 2.0 units lower than the base model, there is evidence that it is better, 

but not simply because it has more predictor variables in it.  This process is repeated as 

necessary.  In practice, -2.0 AIC units is just a guideline – in some cases an AICc should be 

expected to drop more than that, but we used it as a screening criterion, and in many cases AICc 

did drop more than 2.0 units when covariates were added.  The main thing to keep in mind is that 

the AICc can only be compared for sets of covariates used to predict the same series of the 

response variable.  Therefore, the AICc from SWP analyses cannot be compared to those from 

the CVP analyses (though the adjusted R2 can be), nor can the season-average analyses for either 

fish facility be compared to their event-averaged analogs because the event-averaged data sets 

are subsets of the water year 1993-2014 data (Table 1). 

We started by testing the two alternative base models per fish facility.  Then we tested 

equations 5 through 19 for each fish facility using both seasonal average (full data set) versions 

and event-average (data subset per Table 1) versions.  All told, we conducted 64 different 

hypothesis tests; the R code for all of the regression analyses that we tried is provided in an 

appendix to this document.  All of the 64 linear regressions reported in the Results were 

statistically significant at the standard α < 0.05, but for reference, a Bonferroni-corrected P-value 

for n = 64 hypothesis tests would be 0.0008.  Thirty-nine of the models met even this highly 

conservative Bonferroni-corrected P-value and each result was checked for correct signs of 

 
4 AIC is the Akaike Information Criterion which imposes a penalty on models for adding variables.  The AICc is a 

‘corrected’ version that adds yet another penalty when additional variables are added, making for very conservative 

results. 
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expected relationships (see Appendix).  Thus, we are not particularly concerned about the 

number of hypothesis tests that were performed. 

Several members of CAMT’s Delta Smelt SubTeam (DSST) have also expressed an 

interest in searching for water management thresholds that may aid in limiting Delta Smelt 

salvage while allowing for flexibility in water diversion rates.  To explore this possibility, we 

used generalized additive modeling (GAM) for several of the regression models to determine 

whether our linear regression analyses might be missing useful or previously unrecognized 

threshold relationships (i.e., nonlinear relationships) between environmental/operational 

predictors and the salvage of adult Delta Smelt.  For now, we have limited this analysis to the 

SWP data because the results were not promising (see Results).  Specifically, we generated 

GAM versions of the following equations which were described in linear form above. 

 

S ~ FMWT + s(E) + ε          (12) 

S ~ FMWT + s(OMR) + ε         (13) 

S ~ FMWT + s(NTU) + ε         (14) 

S ~ FMWT + s(FF) + ε         (15) 

 

 The letter ‘s’ in front of the environmental/operational covariates indicates that we 

allowed the GAM analysis to make a nonlinear prediction of the relationship between that 

variable and Delta Smelt salvage.  The basic logic in this analysis is that if the GAM predicts a 

nonlinear relationship, then there is support for a threshold.  If it returns a linear relationship, 

then there is not.  The mgcv package in R decides whether the relationship is best described as 

linear or nonlinear by comparing the extra degrees of freedom needed to generate a nonlinear 

prediction against the gain in explanatory power that is generated by doing so.  Thus, the 

software may return a linear or a nonlinear prediction even when the smoothing term ‘s’ is 

specified.  We did not allow the software to return a nonlinear relationship between the FMWT 

index and salvage because (i) we did not have a reason to expect it should (i.e., higher abundance 

should predict higher abundance), and (ii) having all terms be nonlinear could (and would – not 

shown) generate highly confounded but conceptually unsupported relationships.  We performed 

GAMs on the season average versions of equations 12 and 13 as well as the event average 

versions of equations 13-15.  We present plots showing the GAM predictions.  We also 

compared the linear and nonlinear versions of equation 13 to observed salvage in a separate plot.  

We used the same assumptions of normal distribution of error that are assumed in linear 

regression to keep these two analyses as comparable as possible. 
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Step 4 – Simple assessment of why available data cannot robustly test the population impact of 

adult entrainment: To our knowledge, FWS has never attempted to quantitatively link an ITS to 

Delta Smelt population increase or decrease, and we remind the reader that doing so has not been 

a stated goal of any previous ITS.  That said, we developed a basic data summary to evaluate 

whether available data support the hypothesis that adult salvage (and by extension, entrainment) 

measurably affected Delta Smelt survival during water years 2003-2014.  The analysis relied on 

three basic assumptions.  First, salvage of adult Delta Smelt is correlated with abundance indices 

because both are samples of the same population, i.e., the correlation is explicitly assumed to be 

causation in this case.  Second, years when salvage of delta smelt was higher than expected 

based on the FMWT, entrainment was “high” and in years when salvage was lower than 

expected based on the FMWT, entrainment was “low”.  Of course some of the variation in such a 

relationship is also due to imperfect sampling or ‘observation error’ – and state-space models 

could be employed to try to separate this observation error from the variability that was actually 

caused by environmental/operational conditions (e.g., Newman and Lindley 2006).  Ken 

Newman is working on a method to do that and our team will be as well in the near future.  

Third, there is a fairly strong linear relationship between the FMWT and subsequent Spring 

Kodiak Trawl (SKT) indices with noteworthy variation only at low index values (see Step 4 

Results).  One very parsimonious explanation for variation only at low index values is that the 

only substantial “noise” is observation error that we would expect at low abundance given 

imperfect sampling methods.  We employed a simple visual analysis using a color-coded 

scatterplot to show that years with assumed “high” versus “low” entrainment produce no pattern 

on the FMWT v. SKT scatterplot. 

 

Results 

Step 1: Sudden increases in adult Delta Smelt salvage have often, but not always occurred 

coincident with FFd decreasing below negative 100,000 (Figures 4-6).  Extended periods of these 

‘first flush’ conditions were apparent in water years 1993 (~ 45 days), 1998 (~ 45 days) 2000-

2005 (~ 33 to 104 days), 2008 (~ 45 days), and 2011 (~ 60 days), though missing data during 

2002 distort the pattern somewhat in that panel when FFd may have been lower than negative 

100,000 for most of a 104-day period. Accelerating salvage was associated with each of these 

water years except in 2011 when it lagged behind the event and was only observed at the CVP.  

Comparatively brief first flush conditions occurred in water years 1994 (~ 5 days) 1995 (~ 22 

days), 2006 (~ 14 days), and 2013 (~ 17 days).  Accelerating salvage was also frequently 

observed coincident with the comparatively brief first flush conditions in these years.  No (or 

virtually no) first flush conditions occurred in water years 1996, 1999, 2007, 2009-2010, 2012, 

and 2014; however salvage was reported in most of these years as well. 

A strong influence of Delta Smelt abundance on the seasonal salvage total is also 

apparent in Figures 4-6.  In particular, salvage densities have gotten so low compared to 
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historical that they had to be plotted on a different scale starting in water year 2006 and then 

again starting in water year 2009.  This was partly because Delta Smelt abundance has gotten so 

low, but it likely also reflects the impact of the Service and NMFS’ current OMR flow limits 

which started to be implemented in water year 2009 when the y-axis scale had to be lowered a 

second time. 

In Figures 5 and 6, the numbers of Delta Smelt collected by the CDFW’s SKT during 

January–March at stations in the southern Delta upstream of Jersey Point (trawl stations 812–

915) are included to show just how infrequent detections of Delta Smelt have gotten in routine 

monitoring of the southern Delta in recent years.  Note that the SKT only collected three Delta 

Smelt between January and March 2008, so catches were not any higher in the southern Delta in 

2008 than in several other recent years despite the extended period of first flush conditions and 

comparatively high ‘normalized’ salvage that year. 

 The SKT trawls at stations 812 – 919 sampled a range of about 4,778 to 9,153 m3 of 

water per tow (data not shown).  This means that if a Delta Smelt is collected, the measured 

density ‘automatically’ exceeds 1 fish · 10,000 m-3 sampled.  The cumulative distribution of 

adult Delta Smelt salvage densities is very similar at both the SWP and the CVP, but the CVP 

has slightly higher frequencies of low salvage densities in its upper quartile than the SWP.  The 

SWP and CVP fish facilities both have a minimum detection limit for adult Delta Smelt near 

0.001 fish · 10,000 m3, or a detection limit about 1,000 times lower than a single pass of an SKT 

trawl (Figure 7).  Since water year 1993, maximum salvage densities of adult Delta Smelt have 

never exceeded 0.322 and 0.393 fish · 10,000 m-3, at the CVP and SWP fish facilities, 

respectively.  Thus, the densities of fish observed in the fish facilities are far too low to be 

detected with single pass trawling (see Discussion). 
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Figure 4. Time series of adult Delta Smelt salvage at the SWP (dashed lines) and CVP (solid black lines) fish 

facilities, water years 1993-2000 (left side y-axis = daily Old and Middle River (OMR) flow multiplied by 

daily turbidity at Clifton Court Forebay, CCF).  The time series of the index of first flush conditions is shown 

as the solid gray line in each plot; missing data have a value of zero.  Values of the first flush index less than -

100,000 (i.e., where the x-axis crosses the y-axis) are considered indicative of first flush conditions.  The 

thickness of the salvage lines reflects the magnitude of the prior Fall Midwater Trawl (FMWT) index, which 

is also reported at the top of each panel. 
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Figure 5. Time series of adult Delta Smelt salvage at the SWP (dashed lines) and CVP (solid black lines) fish 

facilities during water years 2001-2008 (left side y-axis = daily Old and Middle River (OMR) flow, multiplied 

by daily turbidity at Clifton Court Forebay, CCF).  The time series of the index of first flush conditions is 

shown as the solid gray line in each plot; missing data have a value of zero.  Values of the first flush index less 

than -100,000 (i.e., where the x-axis crosses the y-axis) are considered indicative of first flush conditions.  The 

thickness of the salvage lines reflects the magnitude of the prior Fall Midwater Trawl (FMWT) index, which 

is also reported at the top of each panel.  Note that the y-axis scale changes starting in water year 2006. The 

total number of Delta Smelt collected by the Spring Kodiak Trawl (SKT) surveys during January–March at 

all southern Delta stations upstream of Jersey Point (stations 812–915) is shown in the inset gray-shaded 

boxes.  For reference, there were about 21 trawls taken in the inclusive region each year. 

 



 

21 | P a g e  
 

 

Figure 6.  Time series of adult Delta Smelt salvage at the SWP (dashed lines) and CVP (solid black lines) fish 

facilities during water years 2009-2014.  These years are those in which the current Service and NMFS 

Biological Opinions influenced conditions in the southern Delta (left side y-axis = daily Old and Middle River 

(OMR) flow, multiplied by daily turbidity at Clifton Court Forebay, CCF).  The total number of Delta Smelt 

collected by the Spring Kodiak Trawl (SKT) surveys during January–March at all southern Delta stations 

upstream of Jersey Point (stations 812–915) is shown in the inset gray-shaded boxes.  For reference, there 

were about 21 trawls taken in the inclusive region each year.  Note that the y-axis scale is 1/40th of the value 

used for water years 1993-2005 and 1/5th of the scale used for water years 2006-2008. 
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Figure 7.  Cumulative frequency distributions of adult Delta Smelt daily salvage densities (fish · 10,000 m-3 of 

water exported) at the State Water Project and Central Valley Project fish facilities, water years 1993-2014.  

Note that most daily salvage densities in many years have been zero and thus are not shown in this plot which 

is limited to non-zero estimates. 

 

Step 2: We had two sources of adult Delta Smelt salvage data to choose from.  One was provided 

to us by Bob Fujimura (CDFW, during 2014) and the other was a length-corrected data set 

provided by Ken Newman (FWS) during 2015.  The two datasets are very similar, but not 

identical (Figure 8).  We chose to use the CDFW data set because there should have been no 

need for length correction of the data.  During the months of December-March, most young of 

the year Delta Smelt have not even been spawned yet, much less grown to a salvageable size (≥ 

20 mm).  This extra step of ‘correcting’ the data for length may remove some misidentified fish 

(e.g., larvae of other species) from the counts, but it seems unnecessary given that the correlation 

between the two datasets is very high (Pearson R ~ 0.99). 
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Figure 8.  Scatterplot showing the relationship between the length-uncorrected adult Delta Smelt salvage 

numbers provided to us by Bob Fujimura (CDFW) and the length-corrected data set provided to us by Ken 

Newman (FWS).  Both data sets are sum of salvage for December 1 – March 31 of water years 1993-2014.  

Note that neither data set had data for 2014, but adult Delta Smelt salvage was zero in water year 2014 so we 

have included that data point as zero in both data sets. 
 

We compared results based on two versions of response variables derived from CDFW’s 

adult Delta Smelt salvage data, the sum of December 1 – March 31 salvage (S), and SDcum.  At 

each fish facility, raw salvage totals and their SDcum analogs are very highly correlated, 

essentially redundant variables (Figure 9a,b).  However, SWP and CVP salvage (or SDcum) are 

much more loosely correlated with each other (Figure 9c,d).  We note the low CVP salvage 

compared to SWP in 1993 and 1995, and question whether the CVP adopted CDFW’s QA/QC 

protocols as swiftly or completely as the SWP following the ESA-listing of Delta Smelt, 

particularly because salvage at the two facilities has been more concordant since. 

There may be an interacting influence of exports and relative abundance on adult Delta 

Smelt salvage at both fish facilities because all four panels of Figure 10 imply positive 

associations of these predictor variables and salvage.  The quantity of water exported is 

correlated with OMR flow, particularly SWP exports, which have shown a greater range over the 

past 22 winters (Figure 11).  Note that even seasonal total exports are correlated with event 



 

24 | P a g e  
 

averaged OMR flow which is a single 5-day average OMR flow extracted from each 121-122 

day season. 

 

 

 

Figure 9. Scatterplots of relationships among dependent variables used in Step 3. 
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Figure 10.  Scatterplots of water exports and the FMWT index versus dependent variables used in Step 3. 
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Figure 11.  Scatterplots showing the relationships between water exported from the south Delta by the State 

Water Project (SWP) and Central Valley Project (CVP) versus seasonal and event averaged OMR flow. 
 

 

The December 1 – March 31 exports at the SWP and CVP are correlated, but as 

mentioned above, CVP exports tend to be lower (Figure 12a).  The primary south Delta 

environmental/operational covariates that we explored in this early product are OMR flow and 

turbidity at Clifton Court Forebay.  These potential predictor variables of adult Delta Smelt 

salvage are not correlated, though the 1997 data point can make them appear to be at first glance 

(Figure 12b).  The seasonal average versus “event” versions of OMR and turbidity are correlated 

(Figure 12c,d), though event OMR flows are often lower, and event turbidities often higher, than 

their seasonally-averaged analogs.  Due to their inherent correlation, we did not use both 



 

27 | P a g e  
 

versions in the same regression analyses in Step 3.  Their underlying correlation can call into 

question whether our use of these alternatives actually represents two alternative hypotheses at 

all.  We evaluate this more carefully based on the Results in Step 3 and revisit this topic in the 

Discussion. 

 

 

 
Figure 12. Scatterplots of the relationships among covariates (predictor or explanatory variables) used in Step 

3. 
 

Step 3: The proportion of variance explained by the SWP base models ranged from 0.26 – 0.49, 

and for the CVP base models it ranged from 0.38 – 0.45 (Table 2).  All SWP and CVP base 

models were statistically significant despite their comparatively poor explanatory power (P = 

0.0002 to 0.01 for SWP, and 0.0003 to 0.002 for CVP).  The use of event-averaged covariates 

produced better fitting models for the SWP than the use of seasonally averaged covariates, but 

the same was not true of CVP salvage where both forms of covariates produced similar results 

(Table 2).  In general, the best-fitting SWP salvage models included OMR flow or the FF 

covariate which had OMR in it.  In contrast, the best-fitting CVP models were usually those that 

included the Clifton Court Forebay turbidity term (NTU).  Despite the heavy penalty of the 
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AICc, the best-fitting models were often those that included three or four covariates.  However, 

the sign of the NDOI term was always positive when it was part of a model that outperformed its 

base model (see Appendix).  This was opposite of our hypothesis and suggests that the December 

outflow covariate is unreliable.  It had relatively little explanatory power in the raw salvage 

models in which it was retained, but had an important albeit conceptually incorrect influence on 

several versions of equation 10.  The signs of all other covariates retained in best-fitting models 

were consistent with our expectations (see Appendix).  Equation 18 most consistently provided 

best statistical fits to the data that were most consistent with our a priori expectations.  Several 

diagnostic plots of model fit are provided in the Appendix. 

Table 2. Summary of linear regression results for exploratory analysis of factors influencing the salvage of 

adult Delta Smelt at the State Water Project (SWP) and Central Valley Project (CVP) fish facilities.  Season 

and event base equations use only the California Department of Fish and Wildlife’s Fall Midwater Trawl 

(FMWT) abundance index as a predictor variable or “covariate”.  The other model variations also include 

the FMWT index, but include the additional listed covariates as well.  The numbers listed in each cell are 

adjusted R-squareds.  They are in bold font if the adjusted R-squared exceeded 0.50, i.e., if the model 

explained more than half of the variation in adult Delta Smelt salvage.  The numbers are reported in large 

bold font if the adjusted R-squared equalled or exceeded 0.75, i.e., if the model explained three-quarters or 

more of the variation in adult Delta Smelt salvage.  Cells highlighted in light green had a corrected Akaike 

Information Criterion (AICc) more than 2.0 units lower than their base model; cells highlighted in dark green 

had an AICc more than 5.0 units lower than their base model. 

 SWP CVP 

Equation Season Event Season Event 

3 (season base) 0.35  0.41  

3 (event base)  0.26  0.38 

5: NDOI 0.33 0.23 0.48 0.45 

6: OMR 0.47 0.41 0.38 0.35 

7: NTU 0.32 0.25 0.49 0.48 

8: FF 0.42 0.53 0.38 0.44 

9: OMR + NTU 0.46 0.45 0.51 0.48 

10: NDOI + OMR + NTU 0.49 0.55 0.63 0.63 

4 (season base) 0.49  0.45  

4 (event base)  0.38  0.41 

11: NDOI 0.47 0.35 0.47 0.44 

12: E 0.56 0.66 0.64 0.49 

13: OMR 0.50 0.49 0.43 0.39 

14: NTU 0.48 0.44 0.62 0.57 

15: FF 0.49 0.68 0.43 0.47 

16: OMR + NTU 0.51 0.62 0.63 0.58 

17: NDOI + OMR + NTU 0.48 0.62 0.68 0.68 

18: E + NTU 0.54 0.67 0.75 0.67 

19 NDOI + E + NTU 0.51 0.65 0.78 0.77 
 

 The GAMs returned nonlinear predictions of the season- and event-averaged 

relationships between OMR flow and adult Delta Smelt salvage, but linear predictions for the 
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other environmental/operational covariates (Figure 13).  This likely explains why linear 

regression models using exports to predict Delta Smelt salvage at SWP outperformed the linear 

regressions that used OMR flow (Table 2; Figure 14).  In both the season- and event-averaged 

versions, the predicted OMR flow threshold for increasing adult Delta Smelt salvage was very 

near the -5,000 cfs limit prescribed in the FWS and NMFS BiOps.  Thus, this analysis does not 

support an alternative OMR management threshold to the one currently in use.  The linear 

predictions for the other event-averaged variables do not support the hypothesis that there are 

threshold values of turbidity or its interaction with OMR that can be used to manage the 

entrainment of adult Delta Smelt. 

 

Figure 13. Plots showing the predicted ‘shape’ of relationships between several environmental/operational 

covariates and adult Delta Smelt salvage while controlling for a linear influence of relative abundance on 

salvage.  Data points (barely visible) are observed data, the solid lines show the mean GAM prediction and 

the gray shading shows the predicted (parametric) 95% confidence interval. 
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Figure 14. Time series of adult Delta Smelt salvage at the SWP fish facility (black line) and linear regression 

(red line) and GAM predictions (green line) of that salvage using the FMWT index and season-average OMR 

flow as predictors. 
 

Step 4: As explained in Step 3, the FMWT is a statistically significant predictor of salvage at 

each fish facility.  It is also a statistically significant predictor of the combined salvage at both 

fish facilities (for water years 1993-2013, the sum of the SWP and CVP SDcum; N = 21; r2 = 0.54; 

P = 0.0002).  Recall that the raw salvage of adult Delta Smelt and the SDcum are very closely 

correlated; Pearson r ~ 0.99 for both fish facilities, so there is no need to try alternative versions 

of this analysis. 

In Figure 15, we plotted the 2002-2013 FMWT indices against the subsequent SKT 

indices (2003-2014).  DFW produced the first version of this plot we had seen, but Nobriga et al. 

(2013) reproduced it to make the point that over-winter mortality of Delta Smelt was so 

consistent from year to year that looking for a predation impact on adults would not likely be 

productive.  We think this logic also applies to entrainment, which can be conceptualized as a 

form of ‘predation’.  The FMWT surveys are almost always finished by the time adult salvage 

begins, and the SKT surveys are being conducted during, and often after, the major salvage 
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events have occurred.  However, the relationship between these two indices has almost no 

variation except at low index values.  One very parsimonious explanation for variation only at 

low index values is that the only substantial “noise” is observation error that we would expect at 

low FMWT index values because the FMWT sampling is known to be less effective at capturing 

Delta Smelt than the SKT. 

Thus, we posit that the low variance in the relationship between these successive 

abundance indices is evidence that over-winter mortality is relatively constant from year to year; 

no other pairs of Delta Smelt abundance indices show such a strong, linear relationship (Bennett 

2005; Maunder and Deriso 2011; Nobriga et al. 2013).  If over-winter mortality of adults is fairly 

constant, then year to year variation in entrainment cannot be causing measurable (using current 

survey techniques) variation in adult mortality.  To add additional evidence for this conclusion, 

we color-coded the data points in Figure 15.  The green data points were years with negative 

residuals in the combined SWP + CVP SDcum ~ FMWT relationship, i.e., years of lower than 

expected salvage.  The red data points were the positive residuals or years of higher than 

expected salvage.  The red data points and green data points are intermingled showing that the 

substantial variation in Delta Smelt densities at the fish facilities observed since winter 2003 

does not explain variation in over-winter mortality. 
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Figure 15. Scatterplot of the log-transformed Fall Midwater Trawl index (FMWT) versus the log-

transformed adult Delta Smelt salvage index from the Central Valley Project (CVP) Tracy Fish Facility.  

Years of higher than expected salvage based on the residuals from a separate linear regression of SWP + CVP 

SDcum ~ FMWT are colored red; years of lower than expected salvage are colored green. 

 

Discussion 

On page 18 of its review of this element of the Entrainment Proposal, the Delta Science 

Program’s Independent Review Panel noted: 

The products may not greatly advance knowledge, and there is some possibility the 
products may be misleading. The examination of factors relies heavily on aggregated 
data (e.g., the FMWT index for Delta Smelt is a sum of monthly CPUEs, and CVP and 
SWP abundance indices are analogs to the FMWT index created by summing the 
daily adult Delta Smelt salvage CPUEs for the period December 1 through March 31 
of each water year from 1993 through 2013). The process of aggregation in itself 
may obscure real relationships or introduce spurious relationships. The results 
should be interpreted with caution. 
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The analyses we have presented in this memo largely confirm the concerns expressed by 

the Panel; seasonal averages of OMR and turbidity are correlated (and therefore, confounded) 

with their extremely short time-scale ‘event’ alternatives, and both can produce statistically 

significant explanations of the adult Delta Smelt salvage data (Table 2).  This means that 

appropriate time scales for the management of environmental/operational conditions in the south 

Delta cannot be conclusively determined using the field data.  Further, our GAM analyses did 

not support the hypothesis of threshold (nonlinear) relationships between 

environmental/operational variables other than OMR flow and in the case of OMR flow, did not 

support the hypothesis that there is a threshold different from the one currently specified in 

FWS’ and NMFS’ Biological Opinions.  Thus, these preliminary results seem to reinforce the 

need for behavior-based PTM evaluations to better understand whether there are more effective 

management strategies for controlling the entrainment of adult Delta Smelt than the ones that are 

currently in use and on what time scales those strategies need to be applied. 

We have shown some potentially interesting differences in which covariates best predict 

salvage at each fish facility (Table 2).  Most SWP models that outperformed their base models 

included event-averaged OMR or FF, suggesting the possibility of managing short time scale 

events, but this will need to be confirmed using non-statistical methods.  In contrast, the best-

fitting CVP salvage models tended to include seasonally-averaged turbidity – a term that was 

never retained in the best SWP models (Table 2).  This means that previous analyses, which were 

based on combined SWP and CVP salvage, may have confounded important differences that 

affect the detection of Delta Smelt at each fish facility.  It will be very interesting to see if this 

pattern is predicted using our behavior-based PTM models. 

Figure 15 suggests that interannual variation in the mortality of adult Delta Smelt is not 

high enough to be detected using current survey techniques (see also Rose et al. 2013a who 

estimated adult mortality rates averaged about 0.6% per day).  Is it possible to reconcile what 

appear to be major year to year differences in entrainment with relatively constant over-winter 

mortality? During water years 2003-2014, the combined SWP and CVP salvage of adult Delta 

Smelt has ranged from zero in 2014 to more than 14,000 in 2003. The ability to reconcile these 

seemingly contrasting pieces of information relies on several key observations and hypotheses.  

First, we now have enough data to confirm that salvage is reflecting relative abundance and is 

therefore a proxy for entrainment – at least at a seasonal time scale.  Second, we need to 

recognize that “population estimates” derived by expanding trawl densities are minimum 

estimates of population size because there is no way that net avoidance is zero, and there is no 

way that the established trawl lanes always sample through the center of Delta Smelt’s lateral 

and vertical distribution in each sampled channel or embayment (Feyrer et al. 2013; Bennett and 

Burau 2015).  Third, it is also possible that available pre-screen loss (PSL) estimates are too 

high. 

It can be risky to conclude that a source of mortality is not important based on statistical 

rather than explicitly mechanistic methods.  Kimmerer (2011) developed an entrainment impact 
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analysis for Delta Smelt generated using an empirical 26-year time series of the index ratio 

FWMT/FMWTt-1 as an analytical baseline.  Then, he used a statistical relationship with OMR in a 

resampling simulation to test the consequences of an explicit entrainment rate on the index ratio.  

The relationship with OMR flow that he used was similar or identical to the one in FWS’ 2008 

BiOp Effects Analysis for larval/juvenile entrainment.  Kimmerer did not provide the equation so 

we don’t know if it is precisely the same, but his conceptual description is consistent with FWS’ 

analysis. In the simulations, Kimmerer tested the effect of an average entrainment loss of 10 

percent per year (up to a maximum of 20 percent in any given year).  In his simulation, this loss 

rate caused a substantial fish decline.  He also showed through additional simulations that unless 

the loss rate was reaching levels of 60 percent to 80 percent in some years, a linear regression 

analysis would be highly unlikely to detect the impact.  It is important to note that Kimmerer 

(2011) modeled “entrainment” as a total entrainment loss rate of an adult cohort and its progeny, 

whereas the analysis in Step 4 and the conclusions drawn from it focus explicitly on adult 

salvage as a proxy for entrainment mortality in the winter months. 

It has often been assumed that PSL is higher at the SWP than the CVP (Brown et al. 

1996, but see Kimmerer 2008).  We found that CVP salvage models had better total explanatory 

power than the SWP models (Table 2), a finding which is consistent with the hypothesis that 

PSL decouples entrainment and salvage to a greater degree at the SWP.  However, we also found 

that the non-zero salvage densities are very similar at both fish facilities and the SWP has a 

higher frequency of comparatively high salvage densities (Figure 7), both of which argue against 

higher PSL at the SWP.  The SWP fish facility may sometimes have comparatively high CPUE 

for adult Delta Smelt because it samples the water in Old River first, possibly depleting Delta 

Smelt density before the fish reach the CVP fish facility.  The SWP also exports a higher fraction 

of Sacramento River water than the CVP (Arthur et al. 1996); Sacramento River water is likely 

to have much higher densities of Delta Smelt in it than San Joaquin River water exported into the 

CVP via the head of Old River.  It will also be very interesting to see if this pattern is predicted 

using our behavior-based PTM models. 

Castillo et al. (2012) estimated that PSL of adult Delta Smelt ranged from 90 percent to 

100 percent in the SWP’s Clifton Court Forebay (CCF).  If the circa 14,000 adult Delta Smelt 

salvaged in 2003 had suffered an average PSL of 90 percent, the actual entrainment loss would 

have been on the order of 140,000 fish or about 10 percent of the population, which was 

estimated to have been between one and two million fish5. If we were to assume higher PSLs, the 

proportional entrainment estimates would quickly increase and become irreconcilable with the 

FMWT-SKT relationship shown in Figure 13 unless the expansions of SKT catch data into 

‘population estimates’ are way too low.  We suspect that PSL of wild Delta Smelt must be lower 

 
5 The 2003 adult Delta Smelt population size has been estimated to be between 1 and 2 million fish (Kimmerer 

2008; Rose et al. 2013a).  This number was not supported by Newman (2008), but the latter are based on FMWT 

rather than SKT so they are almost certainly too low because of the lower capture efficiency of the FMWT. 
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than Castillo et al.’s (2012) estimates, and that Delta Smelt population estimates must also be too 

low, in order for the salvage data to reconcile with the index data. 

We note that the basic experimental design employed by Castillo et al. (2012), which was 

based on earlier experiments using Chinook Salmon (e.g., Gingras 1997), has two potential flaws 

that leave the interpretation of the results essentially unconstrained.  First, the experiments 

involved captive-reared Delta Smelt that had never encountered a threat of predation before their 

release into the CCF.  In other fish species, rearing in captivity has been shown to elicit 

behavioral changes that are maladaptive in the wild (Berejikian 1995; Stunz and Minello 2001), 

so the use of captive-raised fish in predation experiments likely leads to overestimates of 

predation rates on wild fish.  Second, the experimental design lacked a control to deal with the 

potential lack of appropriate predator avoidance behavior of captive-raised Delta Smelt.  In order 

to unambiguously quantify the relative vulnerability to predation of the test fish, there would 

ideally be an equivalent release of fish conducted somewhere else in the Delta where 

hypothesized predation vulnerability is lower; the “real” influence of pre-screen loss would be 

the difference between the loss rate in the Delta-proper and the loss rate in CCF.  Unfortunately, 

such a study design is not currently feasible because there is no available way to reliably 

recapture Delta Smelt from within the open estuary with an equal probability to the fish facilities.  

Thus, for the time being, both “true” PSL, and our assumptions about it, are untestable. 

Several recent studies have used a variety of statistical and simulation modeling 

approaches to test for water operations effects on Delta Smelt population dynamics (Brown et al. 

2009; Mac Nally et al. 2010; Thomson et al. 2010; Kimmerer 2011; Maunder and Deriso 2011; 

Miller et al. 2012; Rose et al. 2013b).  This emerging research focus on population impairment 

implicitly reflects an expectation that optimally, any BiOp covering water export operations in 

the Delta should only limit exports when they will limit the viability of the Delta Smelt 

population.  The FWS’ 2008 BiOp was clear that the goals of the OMR flow elements of the 

RPA were to reduce entrainment because doing so would increase spawning habitat—in other 

words, it was more of a habitat argument than a population dynamic or viability argument. There 

is little doubt that OMR flow limits achieve the goals stated in the 2008 BiOp (Kimmerer 2008; 

Grimaldo et al. 2009; this memo) because the winter distributions of Delta Smelt and the causes 

of their entrainment are much more certain than the population-dynamic effects of entrainment.  

Thus, it is the population-dynamic consequences of water operations alternatives that are of 

greatest scientific and resource management interest.  In the past, the inability to link salvage to 

entrainment was considered a major obstacle to quantifying the impact of entrainment on Delta 

Smelt population dynamics and viability (Hymanson and Brown 2006).  However, there may be 

ways to statistically bypass this problem (e.g., Kimmerer 2008; 2011) and behavior-based 

particle tracking models should help improve estimates of proportional entrainment. 

The current state of science on Delta Smelt population dynamics has conceptual and 

analytical shortcomings.  In the biggest picture conceptual sense, the opinions of the authors 

cited in the previous paragraph are that entrainment loss would impair population viability if 
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Delta Smelt population dynamics are density-independent (Kimmerer 2011; Rose et al. 2013b), 

but would not if Delta Smelt population dynamics are density-dependent, presumably because 

compensation for the loss would occur later in the life cycle, or because the dynamics are driven 

almost entirely by the prey and predators of Delta Smelt (Maunder and Deriso 2011; Miller et al. 

2012). 

Statistically speaking, Delta Smelt population dynamics are “density-dependent” 

(Bennett 2005; Maunder and Deriso 2011; Figure 16), but that does not mean that changes in 

Delta Smelt vital rates are actually resulting from changes in their density.  The local research 

community has spent too much time asking if it is possible for “density-dependence” to occur in 

a rare and declining fish population such as Delta Smelt.  The answer is yes in as much as 

abundance patterns that look like density dependence can arise even when fish populations are 

not self-limiting their own resource base (Walters and Korman 1999).  The other critical piece of 

an argument for or against density dependence in Delta Smelt is compensation6 and this dialogue 

has usually focused on whether Delta Smelt are exceeding a “carrying capacity”.  It is not the 

possibility of a carrying capacity that provides the resilience in density-dependent population 

dynamics models, but the accelerating slope of the commonly used nonlinear models near the 

origin (meaning the population is predicted to grow faster and faster as abundance gets lower and 

lower) that generates their resilient predictions (Barrowman and Myers 2000).  The papers that 

have used density-dependent (non-linear) equations to describe the relationships between 

successive Delta Smelt abundance indices have used the Ricker and Beverton-Holt models 

(Maunder and Deriso 2011; Miller et al. 2012) and so they have adopted statistical frameworks 

that are hyper-resilient to predicting extinction. 

What is actually happening with Delta Smelt survival at its current very low abundance? 

Could we expect one statistical model or another to show us the “true” survival relationships 

among life stages given the limited confidence in the ability of current abundance indices to 

generate reliable year-to-year (or season to season) relative abundance estimates?  During the 

period of FMWT monitoring, the Delta Smelt population has on several occasions appeared to 

compensate very strongly for low abundance, but only four times in almost 50 years of 

monitoring, and only when the recruits were born during wet years (Figure 16).  Lierman and 

Hilborn (2001) showed that in some cases the real relationship between the abundance of 

successive fish life stages can be the opposite of what is predicted by Ricker and Beverton-Holt 

models, i.e., that the density-dependence can become depensatory, a situation in which 

abundance rebounds very slowly once it reaches low levels.  Depensatory density-dependence 

can trap fishes into low abundance stanzas from which they may not recover.  If Delta Smelt 

abundance has gotten low enough that depensatory factors are influencing their survival, then the 

 
6 There are two basic types of theoretical density-dependence: compensatory and depensatory.  In the former, 

populations are stabilized over time because their important vital rates like growth and survival increase as their 

abundance decreases and decrease as their abundance increases.  In the latter, populations can be destablized and 

spiral toward extinction because important vital rates decrease once the population declines below a certain 

abundance level. 
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papers that have assumed compensatory density-dependent dynamics (Maunder and Deriso 

2011; Miller et al. 2012) may be far too optimistic about Delta Smelt resilience to actual sources 

of mortality.  Ironically, even the authors that assume density-independence (Kimmerer 2011; 

Rose et al. 2013a) may be too optimistic because they too might predict too much survival or 

reproduction at low abundance.



 

38 | P a g e  
 

 

 

Figure 16. Figure 6 from Liermann and Hilborn (2001) showing hypothetical examples of density-dependent relationships among fish life stages and 

Delta Smelt Fall Midwater Trawl (FMWT) data plotted per Liermann and Hilborn’s panel (b).  The Delta Smelt data are colored blue if DWR 

classified their birth year as wet or above-normal, and red otherwise.  The Delta Smelt data are consistent with density-dependent theory—particularly 

due to the strong compensatory responses observed in 1970, 1993, 1995, and 2011.  Note also that the average recruits/spawner has generally been 

higher when the prior generation index was < 500, than when it was higher, suggesting that the evidence for density-dependence may not be due only to 

the four most visually obvious years.
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Appendix: R code and outputs for the linear regression analyses described in 

Step 3 

The following text was pasted from R.  We added red highlights to show where a predicted 

parameter had a sign that was opposite of its hypothesized relationship to Delta Smelt 

salvage and blue highlights where a model P-value was lower than the Bonferroni-

adjusted P-value for the number of individual analyses performed. 
 

R version 3.1.0 (2014-04-10) -- "Spring Dance" 
Copyright (C) 2014 The R Foundation for Statistical Computing 

Platform: x86_64-w64-mingw32/x64 (64-bit) 

 
R is free software and comes with ABSOLUTELY NO WARRANTY. 

You are welcome to redistribute it under certain conditions. 

Type 'license()' or 'licence()' for distribution details. 
 

  Natural language support but running in an English locale 

 
R is a collaborative project with many contributors. 

Type 'contributors()' for more information and 

'citation()' on how to cite R or R packages in publications. 
 

Type 'demo()' for some demos, 'help()' for on-line help, or 

'help.start()' for an HTML browser interface to help. 
Type 'q()' to quit R. 

 

> ##4/22/2015## 
>  

> ##This is the R file for adult salvage regressions as they appear in Table 2 of the draft CAMT early product## 

>  
> ##The set up and summary of this analysis is in MS Excel file "Data double check.xls"## 

>  

>  

> salvage <- read.csv(file.choose("AdultSalvageR_MasterMarch2015.csv"),header=TRUE) 

>  

> ##SWP cpue, seasonal average base model## 
>  

> swp.base.cpue <- lm(log(swp.cpue + 1) ~ log(fmwt), data = salvage) 
>  

> summary(swp.base.cpue) 

 
Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt), data = salvage) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  
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-1.03723 -0.28274 -0.03915  0.31000  1.46046  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.86310    0.44461  -1.941  0.06645 .  

log(fmwt)    0.31141    0.08831   3.527  0.00212 ** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.5707 on 20 degrees of freedom 
Multiple R-squared:  0.3834,    Adjusted R-squared:  0.3526  

F-statistic: 12.44 on 1 and 20 DF,  p-value: 0.002121 

 
>  

> AIC(swp.base.cpue) 

[1] 41.65984 
> correct.base.cpue <- (AIC(swp.base.cpue) + (12/19)) 

> correct.base.cpue 

[1] 42.29142 

>  

> ##SWP equation 5## 

>  
> swp5.season <- lm(log(swp.cpue + 1) ~ log(fmwt) + ndoi, data = salvage) 

>  

> summary(swp5.season) 
 

Call: 
lm(formula = log(swp.cpue + 1) ~ log(fmwt) + ndoi, data = salvage) 

 

Residuals: 
     Min       1Q   Median       3Q      Max  

-0.89012 -0.29625 -0.02687  0.33858  1.42020  

 
Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -1.21464    0.81748  -1.486  0.15373    
log(fmwt)    0.32145    0.09205   3.492  0.00244 ** 

ndoi         0.08116    0.15711   0.517  0.61140    

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.5815 on 19 degrees of freedom 
Multiple R-squared:  0.3919,    Adjusted R-squared:  0.3279  

F-statistic: 6.124 on 2 and 19 DF,  p-value: 0.00886 

 
> AIC(swp5.season) 

[1] 43.35297 

> correct25 <- (AIC(swp5.season) + (24/18)) 
> correct25 

[1] 44.68631 

>  
> ##SWP equation 6## 

>  

> swp6.season <- lm(log(swp.cpue + 1) ~ log(fmwt) + omr, data = salvage) 
>  

> summary(swp6.season) 

 

Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + omr, data = salvage) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-1.09886 -0.26010 -0.03151  0.33622  1.14709  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.051e+00  4.100e-01  -2.564  0.01900 *  

log(fmwt)    3.015e-01  7.996e-02   3.771  0.00129 ** 

omr         -6.722e-05  2.876e-05  -2.337  0.03053 *  
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.5161 on 19 degrees of freedom 

Multiple R-squared:  0.5211,    Adjusted R-squared:  0.4707  
F-statistic: 10.34 on 2 and 19 DF,  p-value: 0.0009171 

 

> AIC(swp6.season) 
[1] 38.1006 

> correct21 <- (AIC(swp6.season) + (24/18)) 

> correct21 
[1] 39.43393 

>  

> ##SWP equation 7## 
>  

> swp7.season <- lm(log(swp.cpue + 1) ~ log(fmwt) + ntu, data = salvage) 

>  
> summary(swp7.season) 

 

Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + ntu, data = salvage) 

 

Residuals: 
     Min       1Q   Median       3Q      Max  

-1.04389 -0.29939 -0.03767  0.29145  1.46607  

 
Coefficients: 

             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.815268   0.576798  -1.413  0.17370    

log(fmwt)    0.311185   0.090571   3.436  0.00277 ** 

ntu         -0.003084   0.022781  -0.135  0.89374    
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.5853 on 19 degrees of freedom 

Multiple R-squared:  0.384,     Adjusted R-squared:  0.3192  

F-statistic: 5.922 on 2 and 19 DF,  p-value: 0.01002 
 

> AIC(swp7.season) 

[1] 43.63863 
> correct22 <- (AIC(swp7.season) + (24/18)) 

> correct22 

[1] 44.97196 
>  

> ##SWP equation 8## 

>  
> swp8.season <- lm(log(swp.cpue + 1) ~ log(fmwt) + omr_ntu, data = salvage) 

>  

> summary(swp8.season) 
 

Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + omr_ntu, data = salvage) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-1.07084 -0.26984 -0.03385  0.31811  1.27325  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.9165881  0.4205125  -2.180   0.0421 *  

log(fmwt)    0.3114183  0.0833233   3.737   0.0014 ** 
omr_ntu     -0.0017069  0.0009172  -1.861   0.0783 .  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.5385 on 19 degrees of freedom 

Multiple R-squared:  0.4785,    Adjusted R-squared:  0.4236  
F-statistic: 8.716 on 2 and 19 DF,  p-value: 0.002061 

 

> AIC(swp8.season) 
[1] 39.97623 
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> correct24 <- (AIC(swp8.season) + (24/18)) 

> correct24 

[1] 41.30957 

>  
> ##SWP equation 9## 

>  

> swp9.season <- lm(log(swp.cpue + 1) ~ log(fmwt) + omr + ntu, data = salvage) 
>  

> summary(swp9.season) 

 
Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + omr + ntu, data = salvage) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-1.06753 -0.30768 -0.00884  0.26460  1.05934  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -1.382e+00  5.607e-01  -2.465  0.02398 *  

log(fmwt)    3.013e-01  8.047e-02   3.744  0.00149 ** 

omr         -7.852e-05  3.171e-05  -2.476  0.02345 *  
ntu          1.931e-02  2.215e-02   0.872  0.39467    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.5193 on 18 degrees of freedom 
Multiple R-squared:  0.5405,    Adjusted R-squared:  0.4639  

F-statistic: 7.058 on 3 and 18 DF,  p-value: 0.002463 

 
> AIC(swp9.season) 

[1] 39.19023 

> correct23 <- (AIC(swp9.season) + (40/17)) 
> correct23 

[1] 41.54317 

>  
> ##SWP equation 10## 

>  

> swp10.season <- lm(log(swp.cpue + 1) ~ log(fmwt) + ndoi + omr + ntu, data = salvage) 
>  

> summary(swp10.season) 

 
Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + ndoi + omr + ntu,  

    data = salvage) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-0.8020 -0.2747  0.0224  0.2435  0.8885  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.346e+00  8.647e-01  -2.713 0.014771 *   

log(fmwt)    3.248e-01  7.990e-02   4.065 0.000805 *** 
ndoi         2.055e-01  1.432e-01   1.435 0.169365     

omr         -9.241e-05  3.230e-05  -2.861 0.010821 *   

ntu          2.154e-02  2.158e-02   0.998 0.332062     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.5047 on 17 degrees of freedom 

Multiple R-squared:  0.5902,    Adjusted R-squared:  0.4937  

F-statistic:  6.12 on 4 and 17 DF,  p-value: 0.003066 
 

> AIC(swp10.season) 

[1] 38.67404 
> correct26 <- (AIC(swp10.season) + (60/16)) 

> correct26 

[1] 42.42404 
>  
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> ##SWP raw salvage, seasonal average base model## 

>  

> swp1 <- lm(log(swp.salv + 1) ~ log(fmwt), data = salvage) 

>  
> summary(swp1) 

 

Call: 
lm(formula = log(swp.salv + 1) ~ log(fmwt), data = salvage) 

 

Residuals: 
   Min     1Q Median     3Q    Max  

-3.574 -1.452 -0.102  1.397  3.759  

 
Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -2.2501     1.7124  -1.314 0.203700     
log(fmwt)     1.5684     0.3401   4.612 0.000169 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 2.198 on 20 degrees of freedom 

Multiple R-squared:  0.5154,    Adjusted R-squared:  0.4911  
F-statistic: 21.27 on 1 and 20 DF,  p-value: 0.0001687 

 

>  
> AIC(swp1) 

[1] 100.9905 
> correct1 <- (AIC(swp1) + (12/19)) 

> correct1 

[1] 101.6221 
>  

> ##SWP equation 11## 

>  
> swp11.season <- lm(log(swp.salv + 1) ~ log(fmwt) + ndoi, data = salvage) 

>  

> summary(swp11.season) 
 

Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + ndoi, data = salvage) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-3.7274 -1.3017  0.0963  1.3938  3.8741  

 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -1.2481     3.1584  -0.395 0.697112     

log(fmwt)     1.5398     0.3556   4.330 0.000361 *** 
ndoi         -0.2313     0.6070  -0.381 0.707345     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 2.247 on 19 degrees of freedom 

Multiple R-squared:  0.519,     Adjusted R-squared:  0.4684  
F-statistic: 10.25 on 2 and 19 DF,  p-value: 0.0009553 

 

> AIC(swp11.season) 

[1] 102.823 

> correct6 <- (AIC(swp11.season) + (24/18)) 

> correct6 
[1] 104.1563 

>  

>  
> ##SWP equation 12## 

>  

> swp12.season <- lm(log(swp.salv + 1) ~ log(fmwt) + swp.exp, data = salvage) 
>  

> summary(swp12.season) 

 
Call: 
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lm(formula = log(swp.salv + 1) ~ log(fmwt) + swp.exp, data = salvage) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  
-4.4669 -0.7258  0.2260  1.0145  2.6321  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -4.056e+00  1.837e+00  -2.207 0.039777 *   

log(fmwt)    1.427e+00  3.252e-01   4.388 0.000316 *** 
swp.exp      7.231e-11  3.631e-11   1.991 0.061010 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 2.051 on 19 degrees of freedom 

Multiple R-squared:  0.599,     Adjusted R-squared:  0.5568  
F-statistic: 14.19 on 2 and 19 DF,  p-value: 0.0001696 

 

> AIC(swp12.season) 

[1] 98.82014 

> correct2 <- (AIC(swp12.season) + (24/18)) 

> correct2 
[1] 100.1535 

>  

>  
> ##SWP equation 13## 

>  
> swp13.season <- lm(log(swp.salv + 1) ~ log(fmwt) + omr, data = salvage) 

>  

> summary(swp13.season) 
 

Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + omr, data = salvage) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-3.8523 -1.0365  0.1073  1.6621  3.1474  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.6172838  1.7394844  -1.505 0.148861     

log(fmwt)    1.5490545  0.3392430   4.566 0.000211 *** 
omr         -0.0001313  0.0001220  -1.076 0.295523     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 2.19 on 19 degrees of freedom 

Multiple R-squared:  0.5432,    Adjusted R-squared:  0.4951  
F-statistic:  11.3 on 2 and 19 DF,  p-value: 0.0005856 

 

> AIC(swp13.season) 
[1] 101.6899 

> correct3 <- (AIC(swp13.season) + (24/18)) 

> correct3 
[1] 103.0232 

>  

>  

> ##SWP equation 14## 

>  

> swp14.season <- lm(log(swp.salv + 1) ~ log(fmwt) + ntu, data = salvage) 
>  

> summary(swp14.season) 

 
Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + ntu, data = salvage) 

 
Residuals: 

    Min      1Q  Median      3Q     Max  

-3.5005 -1.5318  0.2368  1.1277  3.6521  
 



 

49 | P a g e  
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -3.16516    2.19594  -1.441 0.165760     

log(fmwt)    1.57272    0.34482   4.561 0.000213 *** 
ntu          0.05900    0.08673   0.680 0.504516     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 2.228 on 19 degrees of freedom 

Multiple R-squared:  0.5269,    Adjusted R-squared:  0.4771  
F-statistic: 10.58 on 2 and 19 DF,  p-value: 0.0008171 

 

> AIC(swp14.season) 
[1] 102.4611 

> correct4 <- (AIC(swp14.season) + (24/18)) 

> correct4 
[1] 103.7944 

>  

>  

> ##SWP equation 15## 

>  

> swp15.season <- lm(log(swp.salv + 1) ~ log(fmwt) + omr_ntu, data = salvage) 
>  

> summary(swp15.season) 

 
Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + omr_ntu, data = salvage) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-3.6201 -1.2734  0.0526  1.6882  3.3620  

 

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.363680   1.719246  -1.375 0.185180     

log(fmwt)    1.568405   0.340663   4.604 0.000194 *** 
omr_ntu     -0.003623   0.003750  -0.966 0.346139     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 2.202 on 19 degrees of freedom 

Multiple R-squared:  0.538,     Adjusted R-squared:  0.4894  
F-statistic: 11.06 on 2 and 19 DF,  p-value: 0.0006512 

 

> AIC(swp15.season) 
[1] 101.9356 

> correct5 <- (AIC(swp15.season) + (24/18)) 

> correct5 
[1] 103.2689 

>  

>  
> ##SWP equation 16## 

>  

> swp16.season <- lm(log(swp.salv + 1) ~ log(fmwt) + omr + ntu, data = salvage) 
>  

> summary(swp16.season) 

 

Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + omr + ntu, data = salvage) 

 
Residuals: 

    Min      1Q  Median      3Q     Max  

-4.1186 -0.8865  0.0196  1.1139  3.7442  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.6018292  2.3283237  -1.976 0.063631 .   

log(fmwt)    1.5475760  0.3341443   4.631 0.000207 *** 

omr         -0.0001990  0.0001317  -1.511 0.148139     
ntu          0.1157583  0.0919614   1.259 0.224195     
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 2.157 on 18 degrees of freedom 
Multiple R-squared:  0.5801,    Adjusted R-squared:  0.5102  

F-statistic:  8.29 on 3 and 18 DF,  p-value: 0.001127 

 
> AIC(swp16.season) 

[1] 101.8338 

> correct4.5 <- (AIC(swp16.season) + (40/17)) 
> correct4.5 

[1] 104.1868 

>  
>  

> ##SWP equation 17## 

>  
> swp17.season <- lm(log(swp.salv + 1) ~ log(fmwt) + ndoi + omr + ntu, data = salvage) 

>  

> summary(swp17.season) 

 

Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + ndoi + omr + ntu,  
    data = salvage) 

 

Residuals: 
    Min      1Q  Median      3Q     Max  

-4.1256 -0.8903  0.0141  1.1107  3.7480  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.6440825  3.8017889  -1.222 0.238547     

log(fmwt)    1.5486083  0.3513118   4.408 0.000384 *** 

ndoi         0.0090113  0.6295458   0.014 0.988746     
omr         -0.0001996  0.0001420  -1.405 0.177968     

ntu          0.1158561  0.0948736   1.221 0.238691     

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 2.219 on 17 degrees of freedom 
Multiple R-squared:  0.5801,    Adjusted R-squared:  0.4813  

F-statistic: 5.872 on 4 and 17 DF,  p-value: 0.003711 

 
> AIC(swp17.season) 

[1] 103.8335 

> correct6.5 <- (AIC(swp17.season) + (60/16)) 
> correct6.5 

[1] 107.5835 

>  
>  

> ##SWP equation 18## 

>  
> swp18.season <- lm(log(swp.salv + 1) ~ log(fmwt) + swp.exp + ntu, data = salvage) 

>  

> summary(swp18.season) 
 

Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + swp.exp + ntu, data = salvage) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  
-4.6605 -0.7292  0.1813  1.0398  2.8337  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -4.469e+00  2.186e+00  -2.044 0.055896 .   

log(fmwt)    1.434e+00  3.334e-01   4.302 0.000429 *** 
swp.exp      6.974e-11  3.781e-11   1.844 0.081673 .   

ntu          3.076e-02  8.314e-02   0.370 0.715685     

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Residual standard error: 2.1 on 18 degrees of freedom 

Multiple R-squared:  0.6021,    Adjusted R-squared:  0.5357  

F-statistic: 9.078 on 3 and 18 DF,  p-value: 0.0007061 
 

> AIC(swp18.season) 

[1] 100.6534 
> correct99 <- (AIC(swp18.season) + (40/17)) 

> correct99 

[1] 103.0064 
>  

>  

> ##SWP equation 19## 
>  

> swp19.season <- lm(log(swp.salv + 1) ~ log(fmwt) + ndoi + swp.exp + ntu, data = salvage) 

>  
> summary(swp19.season) 

 

Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + ndoi + swp.exp +  

    ntu, data = salvage) 

 
Residuals: 

    Min      1Q  Median      3Q     Max  

-4.5734 -0.6767  0.2603  1.1091  2.8093  
 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -3.938e+00  3.413e+00  -1.154 0.264646     

log(fmwt)    1.422e+00  3.483e-01   4.081 0.000778 *** 
ndoi        -1.217e-01  5.890e-01  -0.207 0.838756     

swp.exp      6.868e-11  3.919e-11   1.752 0.097739 .   

ntu          3.222e-02  8.573e-02   0.376 0.711724     
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 2.158 on 17 degrees of freedom 

Multiple R-squared:  0.6031,    Adjusted R-squared:  0.5097  

F-statistic: 6.457 on 4 and 17 DF,  p-value: 0.002378 
 

> AIC(swp19.season) 

[1] 102.5983 
> correct100 <- (AIC(swp19.season) + (60/16)) 

> correct100 

[1] 106.3483 
>  

>  

> ##Start CVP seasonal CPUE models## 
>  

> ##base model## 

>  
> cvp.base.cpue <- lm(log(cvp.cpue + 1) ~ log(fmwt), data = salvage) 

>  

> summary(cvp.base.cpue) 
 

Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt), data = salvage) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  
-0.93063 -0.21147 -0.01207  0.13516  1.02228  

 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.75780    0.35737  -2.120 0.046663 *   

log(fmwt)    0.27929    0.07098   3.935 0.000819 *** 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.4587 on 20 degrees of freedom 
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Multiple R-squared:  0.4364,    Adjusted R-squared:  0.4082  

F-statistic: 15.48 on 1 and 20 DF,  p-value: 0.0008192 

 

>  
> AIC(cvp.base.cpue) 

[1] 32.04892 

> correct20.1 <- (AIC(cvp.base.cpue) + (12/19)) 
> correct20.1 

[1] 32.6805 

>  
> ##CVP equation 5## 

>  

> cvp5.season <- lm(log(cvp.cpue + 1) ~ log(fmwt) + ndoi, data = salvage) 
>  

> summary(cvp5.season) 

 
Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + ndoi, data = salvage) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.75375 -0.29647 -0.03715  0.16784  0.91280  
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.71366    0.60697  -2.823 0.010858 *   

log(fmwt)    0.30659    0.06834   4.486 0.000253 *** 
ndoi         0.22068    0.11665   1.892 0.073857 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.4318 on 19 degrees of freedom 

Multiple R-squared:  0.5257,    Adjusted R-squared:  0.4758  
F-statistic: 10.53 on 2 and 19 DF,  p-value: 0.0008366 

 

> AIC(cvp5.season) 
[1] 30.25213 

> correct24.1 <- (AIC(cvp5.season) + (24/18)) 

> correct24.1 
[1] 31.58546 

>  

> ##CVP equation 6## 
>  

> cvp6.season <- lm(log(cvp.cpue + 1) ~ log(fmwt) + omr, data = salvage) 

>  
> summary(cvp6.season) 

 

Call: 
lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + omr, data = salvage) 

 

Residuals: 
    Min      1Q  Median      3Q     Max  

-0.9371 -0.2082 -0.0225  0.1334  0.9892  

 
Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -7.776e-01  3.732e-01  -2.084  0.05094 .  

log(fmwt)    2.782e-01  7.278e-02   3.823  0.00115 ** 

omr         -7.088e-06  2.618e-05  -0.271  0.78952    

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.4698 on 19 degrees of freedom 
Multiple R-squared:  0.4385,    Adjusted R-squared:  0.3794  

F-statistic:  7.42 on 2 and 19 DF,  p-value: 0.004156 

 
> AIC(cvp6.season) 

[1] 33.96421 

> correct21.1 <- (AIC(cvp6.season) + (24/18)) 
> correct21.1 
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[1] 35.29755 

>  

> ##CVP equation 7## 

>  
> cvp7.season <- lm(log(cvp.cpue + 1) ~ log(fmwt) + ntu, data = salvage) 

>  

> summary(cvp7.season) 
 

Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + ntu, data = salvage) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-0.85672 -0.19446 -0.00549  0.12206  0.96003  

 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.28895    0.41901  -3.076 0.006216 **  

log(fmwt)    0.28180    0.06579   4.283 0.000402 *** 

ntu          0.03425    0.01655   2.070 0.052364 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.4252 on 19 degrees of freedom 

Multiple R-squared:   0.54,     Adjusted R-squared:  0.4916  
F-statistic: 11.15 on 2 and 19 DF,  p-value: 0.0006249 

 
> AIC(cvp7.season) 

[1] 29.57636 

> correct22.1 <- (AIC(cvp7.season) + (24/18)) 
> correct22.1 

[1] 30.90969 

>  
> ##CVP equation 8## 

>  

> cvp8.season <- lm(log(cvp.cpue + 1) ~ log(fmwt) + omr_ntu, data = salvage) 
>  

> summary(cvp8.season) 

 
Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + omr_ntu, data = salvage) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-0.93104 -0.21153 -0.01271  0.13446  1.02004  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -7.584e-01  3.675e-01  -2.064  0.05297 .  

log(fmwt)    2.793e-01  7.282e-02   3.835  0.00112 ** 

omr_ntu     -2.041e-05  8.016e-04  -0.025  0.97995    
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.4707 on 19 degrees of freedom 

Multiple R-squared:  0.4364,    Adjusted R-squared:  0.377  

F-statistic: 7.355 on 2 and 19 DF,  p-value: 0.00431 

 

> AIC(cvp8.season) 

[1] 34.04817 
> correct23.1 <- (AIC(cvp8.season) + (24/18)) 

> correct23.1 

[1] 35.3815 
>  

>  

> ##CVP equation 9## 
>  

> cvp9.season <- lm(log(cvp.cpue + 1) ~ log(fmwt) + omr + ntu, data = salvage) 

>  
> summary(cvp9.season) 
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Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + omr + ntu, data = salvage) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-0.86652 -0.19668  0.03104  0.21364  0.79142  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.524e+00  4.517e-01  -3.374 0.003380 **  

log(fmwt)    2.777e-01  6.482e-02   4.284 0.000447 *** 

omr         -3.255e-05  2.554e-05  -1.274 0.218799     
ntu          4.353e-02  1.784e-02   2.440 0.025244 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.4184 on 18 degrees of freedom 

Multiple R-squared:  0.5781,    Adjusted R-squared:  0.5078  

F-statistic: 8.221 on 3 and 18 DF,  p-value: 0.001175 

 

> AIC(cvp9.season) 
[1] 29.67643 

> correct25.1 <- (AIC(cvp9.season) + (24/18)) 

> correct25.1 
[1] 31.00976 

>  
> ##CVP equation 10## 

>  

> cvp10.season <- lm(log(cvp.cpue + 1) ~ log(fmwt) + ndoi + omr + ntu, data = salvage) 
>  

> summary(cvp10.season) 

 
Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + ndoi + omr + ntu,  

    data = salvage) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-0.70952 -0.23286  0.03088  0.18483  0.56246  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.816e+00  6.174e-01  -4.561 0.000277 *** 

log(fmwt)    3.092e-01  5.705e-02   5.421 4.59e-05 *** 
ndoi         2.755e-01  1.022e-01   2.695 0.015340 *   

omr         -5.118e-05  2.306e-05  -2.219 0.040373 *   

ntu          4.653e-02  1.541e-02   3.020 0.007719 **  
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.3603 on 17 degrees of freedom 

Multiple R-squared:  0.7044,    Adjusted R-squared:  0.6348  

F-statistic: 10.13 on 4 and 17 DF,  p-value: 0.0002216 
 

> AIC(cvp10.season) 

[1] 23.85105 

> correct26.1 <- (AIC(cvp10.season) + (60/16)) 

> correct26.1 

[1] 27.60105 
>  

> ##CVP raw salvage, seasonal average base model## 

>  
> cvp1 <- lm(log(cvp.salv + 1) ~ log(fmwt), data = salvage) 

>  

> summary(cvp1) 
 

Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt), data = salvage) 
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Residuals: 

    Min      1Q  Median      3Q     Max  

-3.6004 -0.8369  0.0603  1.2408  2.5255  

 
Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.5569     1.2322   0.452 0.656145     
log(fmwt)     1.0529     0.2447   4.302 0.000347 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 1.582 on 20 degrees of freedom 

Multiple R-squared:  0.4807,    Adjusted R-squared:  0.4547  
F-statistic: 18.51 on 1 and 20 DF,  p-value: 0.0003469 

 

>  
> AIC(cvp1) 

[1] 86.51215 

> correct1.1 <- (AIC(cvp1) + (12/19)) 

> correct1.1 

[1] 87.14373 

>  
>  

> ##CVP equation 11## 

>  
> cvp11.season <- lm(log(cvp.salv + 1) ~ log(fmwt) + ndoi, data = salvage) 

>  
> summary(cvp11.season) 

 

Call: 
lm(formula = log(cvp.salv + 1) ~ log(fmwt) + ndoi, data = salvage) 

 

Residuals: 
    Min      1Q  Median      3Q     Max  

-3.5462 -0.8392 -0.0122  1.0872  2.5331  

 
Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -1.7595     2.1903  -0.803 0.431747     
log(fmwt)     1.1191     0.2466   4.538 0.000225 *** 

ndoi          0.5348     0.4210   1.270 0.219263     

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.558 on 19 degrees of freedom 
Multiple R-squared:  0.5213,    Adjusted R-squared:  0.4709  

F-statistic: 10.35 on 2 and 19 DF,  p-value: 0.0009128 

 
> AIC(cvp11.season) 

[1] 86.71842 

> correct6.1 <- (AIC(cvp11.season) + (24/18)) 
> correct6.1 

[1] 88.05176 

>  
>  

> ##CVP equation 12## 

>  

> cvp12.season <- lm(log(cvp.salv + 1) ~ log(fmwt) + cvp.exp, data = salvage) 

>  

> summary(cvp12.season) 
 

Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + cvp.exp, data = salvage) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-2.39606 -0.92071 -0.01001  1.01927  2.17506  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     



 

56 | P a g e  
 

(Intercept) -2.806e+00  1.430e+00  -1.963 0.064496 .   

log(fmwt)    8.856e-01  2.062e-01   4.295 0.000391 *** 

cvp.exp      1.462e-10  4.414e-11   3.312 0.003663 **  

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.292 on 19 degrees of freedom 
Multiple R-squared:  0.6708,    Adjusted R-squared:  0.6361  

F-statistic: 19.35 on 2 and 19 DF,  p-value: 2.608e-05 

 
> AIC(cvp12.season) 

[1] 78.48501 

> correct2.1 <- (AIC(cvp12.season) + (24/18)) 
> correct2.1 

[1] 79.81834 

>  
>  

> ##CVP equation 13## 

>  

> cvp13.season <- lm(log(cvp.salv + 1) ~ log(fmwt) + omr, data = salvage) 

>  

> summary(cvp13.season) 
 

Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + omr, data = salvage) 
 

Residuals: 
    Min      1Q  Median      3Q     Max  

-3.6088 -0.8236  0.0532  1.2558  2.5631  

 
Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 5.795e-01  1.289e+00   0.450 0.658101     
log(fmwt)   1.054e+00  2.514e-01   4.193 0.000493 *** 

omr         8.071e-06  9.043e-05   0.089 0.929816     

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.623 on 19 degrees of freedom 
Multiple R-squared:  0.4809,    Adjusted R-squared:  0.4262  

F-statistic:   8.8 on 2 and 19 DF,  p-value: 0.001972 

 
> AIC(cvp13.season) 

[1] 88.50293 

> correct3.1 <- (AIC(cvp13.season) + (24/18)) 
> correct3.1 

[1] 89.83627 

>  
> ##CVP equation 14## 

>  

> cvp14.season <- lm(log(cvp.salv + 1) ~ log(fmwt) + ntu, data = salvage) 
>  

> summary(cvp14.season) 

 
Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + ntu, data = salvage) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-2.7498 -0.6932  0.1781  0.7868  2.2373  
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.90226    1.30745  -1.455  0.16201     

log(fmwt)    1.06458    0.20530   5.185 5.26e-05 *** 

ntu          0.15857    0.05164   3.071  0.00629 **  
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 1.327 on 19 degrees of freedom 
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Multiple R-squared:  0.6529,    Adjusted R-squared:  0.6164  

F-statistic: 17.87 on 2 and 19 DF,  p-value: 4.305e-05 

 

> AIC(cvp14.season) 
[1] 79.64575 

> correct4.1 <- (AIC(cvp14.season) + (24/18)) 

> correct4.1 
[1] 80.97908 

>  

>  
> ##CVP equation 15## 

>  

> cvp15.season <- lm(log(cvp.salv + 1) ~ log(fmwt) + omr_ntu, data = salvage) 
>  

> summary(cvp15.season) 

 
Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + omr_ntu, data = salvage) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-3.6088 -0.8263  0.0538  1.1960  2.6154  
 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.5826281  1.2642627   0.461 0.650142     

log(fmwt)   1.0529454  0.2505098   4.203 0.000482 *** 
omr_ntu     0.0008196  0.0027577   0.297 0.769538     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 1.619 on 19 degrees of freedom 

Multiple R-squared:  0.4831,    Adjusted R-squared:  0.4287  
F-statistic: 8.878 on 2 and 19 DF,  p-value: 0.001895 

 

> AIC(cvp15.season) 
[1] 88.41012 

> correct5.1 <- (AIC(cvp15.season) + (24/18)) 

> correct5.1 
[1] 89.74345 

>  

>  
> ##CVP equation 16## 

>  

> cvp16.season <- lm(log(cvp.salv + 1) ~ log(fmwt) + omr + ntu, data = salvage) 
>  

> summary(cvp16.season) 

 
Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + omr + ntu, data = salvage) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-2.48757 -0.75125  0.07355  0.96504  1.87247  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.6360419  1.4093014  -1.870  0.07777 .   

log(fmwt)    1.0517420  0.2022528   5.200 6.03e-05 *** 

omr         -0.0001016  0.0000797  -1.275  0.21851     
ntu          0.1875631  0.0556630   3.370  0.00341 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 1.305 on 18 degrees of freedom 

Multiple R-squared:  0.6817,    Adjusted R-squared:  0.6286  
F-statistic: 12.85 on 3 and 18 DF,  p-value: 9.987e-05 

 

> AIC(cvp16.season) 
[1] 79.74342 
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> correct5.6 <- (AIC(cvp16.season) + (40/17)) 

> correct5.6 

[1] 82.09636 

>  
>  

> ##CVP equation 17## 

>  
> cvp17.season <- lm(log(cvp.salv + 1) ~ log(fmwt) + ndoi + omr + ntu, data = salvage) 

>  

> summary(cvp17.season) 
 

Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + ndoi + omr + ntu,  
    data = salvage) 

 

Residuals: 
    Min      1Q  Median      3Q     Max  

-2.3338 -0.5503  0.3395  0.7380  1.5200  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -5.763e+00  2.084e+00  -2.766  0.01321 *   
log(fmwt)    1.128e+00  1.925e-01   5.859 1.89e-05 *** 

ndoi         6.670e-01  3.450e-01   1.933  0.07005 .   

omr         -1.467e-04  7.784e-05  -1.885  0.07663 .   
ntu          1.948e-01  5.199e-02   3.747  0.00161 **  

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.216 on 17 degrees of freedom 
Multiple R-squared:  0.739,     Adjusted R-squared:  0.6776  

F-statistic: 12.04 on 4 and 17 DF,  p-value: 8e-05 

 
> AIC(cvp17.season) 

[1] 77.37191 

> correct5.7 <- (AIC(cvp17.season) + (60/16)) 
> correct5.7 

[1] 81.12191 

>  
>  

> ##CVP equation 18## 

>  
> cvp18.season <- lm(log(cvp.salv + 1) ~ log(fmwt) + cvp.exp + ntu, data = salvage) 

>  

> summary(cvp18.season) 
 

Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + cvp.exp + ntu, data = salvage) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-1.8843 -0.8562  0.1940  0.7089  1.3478  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -4.306e+00  1.290e+00  -3.337  0.00367 **  

log(fmwt)    9.213e-01  1.724e-01   5.343 4.45e-05 *** 

cvp.exp      1.234e-10  3.758e-11   3.283  0.00414 **  

ntu          1.306e-01  4.282e-02   3.049  0.00690 **  

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.078 on 18 degrees of freedom 
Multiple R-squared:  0.7829,    Adjusted R-squared:  0.7467  

F-statistic: 21.64 on 3 and 18 DF,  p-value: 3.385e-06 

 
> AIC(cvp18.season) 

[1] 71.32337 

> correct5.5 <- (AIC(cvp18.season) + (40/17)) 
> correct5.5 
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[1] 73.67631 

>  

> layout(matrix(c(1,2,3,4),2,2))  

> plot(cvp18.season) 
 

 
>  

> ##CVP equation 19## 
>  

> cvp19.season <- lm(log(cvp.salv + 1) ~ log(fmwt) + ndoi + cvp.exp + ntu, data = salvage) 

>  
> summary(cvp19.season) 

 

Call: 
lm(formula = log(cvp.salv + 1) ~ log(fmwt) + ndoi + cvp.exp +  

    ntu, data = salvage) 

 
Residuals: 

    Min      1Q  Median      3Q     Max  

-2.2158 -0.7084  0.1908  0.7214  1.3972  
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Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -6.716e+00  1.681e+00  -3.995 0.000937 *** 
log(fmwt)    9.826e-01  1.620e-01   6.066 1.26e-05 *** 

ndoi         5.487e-01  2.701e-01   2.032 0.058122 .   

cvp.exp      1.288e-10  3.479e-11   3.702 0.001770 **  
ntu          1.247e-01  3.963e-02   3.147 0.005881 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.995 on 17 degrees of freedom 

Multiple R-squared:  0.8253,    Adjusted R-squared:  0.7842  
F-statistic: 20.08 on 4 and 17 DF,  p-value: 2.904e-06 

 

> AIC(cvp19.season) 
[1] 68.54128 

> correct5.8 <- (AIC(cvp19.season) + (60/16)) 

> correct5.8 

[1] 72.29128 

> 

##The next section is the SWP CPUE event models## 
>  

> ##Next, I'm opening a new file for SWP event data comparisons.  This file excluded years of 0 SWP salvage == 2007, 2011, 2014## 

>  
> event.swp <- read.csv(file.choose("AdultSalvageR_March2015_SWPEvent.csv"),header=TRUE) 

>  
> ##Base model## 

>  

> swp30 <- lm(log(swp.cpue + 1) ~ log(fmwt), data = event.swp) 
>  

> summary(swp30) 

 
Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt), data = event.swp) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-1.01884 -0.35099 -0.08044  0.35513  1.42976  
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  -0.7141     0.5558  -1.285   0.2161   

log(fmwt)     0.2874     0.1058   2.717   0.0147 * 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.6116 on 17 degrees of freedom 
Multiple R-squared:  0.3027,    Adjusted R-squared:  0.2617  

F-statistic:  7.38 on 1 and 17 DF,  p-value: 0.01466 

 
>  

> AIC(swp30) 

[1] 39.12495 
> correct30 <- (AIC(swp30) + (12/16)) 

> correct30 

[1] 39.87495 

>  

> ##SWP equation 5 - event version## 

>  
> swp5.event <- lm(log(swp.cpue + 1) ~ log(fmwt) + ndoi, data = event.swp) 

>  

> summary(swp5.event) 
 

Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + ndoi, data = event.swp) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-0.86053 -0.43121 -0.06633  0.33696  1.38569  
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Coefficients: 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept) -1.08356    0.92881  -1.167   0.2605   
log(fmwt)    0.29712    0.10991   2.703   0.0157 * 

ndoi         0.08673    0.17245   0.503   0.6219   

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.6255 on 16 degrees of freedom 
Multiple R-squared:  0.3136,    Adjusted R-squared:  0.2278  

F-statistic: 3.654 on 2 and 16 DF,  p-value: 0.04929 

 
> AIC(swp5.event) 

[1] 40.82695 

> correct301 <- (AIC(swp5.event) + (24/15)) 
> correct301 

[1] 42.42695 

>  

>  

> ##SWP equation 6 - event version## 

>  
>  

> swp6.event <- lm(log(swp.cpue + 1) ~ log(fmwt) + swp.omr, data = event.swp) 

>  
> summary(swp6.event) 

 
Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + swp.omr, data = event.swp) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-0.88979 -0.17155 -0.05509  0.31601  1.20503  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)   
(Intercept) -1.046e+00  5.154e-01  -2.030   0.0593 . 

log(fmwt)    2.617e-01  9.493e-02   2.757   0.0140 * 

swp.omr     -7.164e-05  3.080e-05  -2.326   0.0335 * 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.545 on 16 degrees of freedom 

Multiple R-squared:  0.4789,    Adjusted R-squared:  0.4138  

F-statistic: 7.352 on 2 and 16 DF,  p-value: 0.005438 
 

> AIC(swp6.event) 

[1] 35.59153 
> correct31 <- (AIC(swp6.event) + (24/15)) 

> correct31 

[1] 37.19153 
>  

> ##SWP equation 7 - event version## 

>  
> swp7.event <- lm(log(swp.cpue + 1) ~ log(fmwt) + swp.ntu, data = event.swp) 

>  

> summary(swp7.event) 

 

Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + swp.ntu, data = event.swp) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-0.9176 -0.4425  0.0069  0.3655  1.4230  

 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)   

(Intercept) -1.03405    0.67133  -1.540   0.1430   

log(fmwt)    0.30018    0.10762   2.789   0.0131 * 
swp.ntu      0.00865    0.01001   0.864   0.4004   
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.6162 on 16 degrees of freedom 
Multiple R-squared:  0.3338,    Adjusted R-squared:  0.2505  

F-statistic: 4.008 on 2 and 16 DF,  p-value: 0.0388 

 
> AIC(swp7.event) 

[1] 40.25859 

> correct32 <- (AIC(swp7.event) + (24/15)) 
> correct32 

[1] 41.85859 

>  
>  

> ##SWP equation 8 - event version## 

>  
> swp8.event <- lm(log(swp.cpue + 1) ~ log(fmwt) + swp.omr_ntu, data = event.swp) 

>  

> summary(swp8.event) 

 

Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + swp.omr_ntu, data = event.swp) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-0.80828 -0.30064  0.08029  0.25024  1.04113  

 
Coefficients: 

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) -1.206586   0.469987  -2.567  0.02067 *  
log(fmwt)    0.279514   0.084721   3.299  0.00453 ** 

swp.omr_ntu -0.003473   0.001070  -3.246  0.00506 ** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.4895 on 16 degrees of freedom 
Multiple R-squared:  0.5796,    Adjusted R-squared:  0.527  

F-statistic: 11.03 on 2 and 16 DF,  p-value: 0.0009758 

 
> AIC(swp8.event) 

[1] 31.51148 

> correct33 <- (AIC(swp8.event) + (24/15)) 
> correct33 

[1] 33.11148 

>  
>  

> ##SWP equation 9 - event version## 

>  
> swp9.event <- lm(log(swp.cpue + 1) ~ log(fmwt) + swp.omr + swp.ntu, data = event.swp) 

>  

> summary(swp9.event) 
 

Call: 

lm(formula = log(swp.cpue + 1) ~ log(fmwt) + swp.omr + swp.ntu,  
    data = event.swp) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.79677 -0.39631  0.07757  0.29768  1.16898  

 
Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -1.562e+00  6.064e-01  -2.575  0.02111 *  
log(fmwt)    2.778e-01  9.219e-02   3.013  0.00874 ** 

swp.omr     -7.992e-05  3.023e-05  -2.644  0.01841 *  

swp.ntu      1.289e-02  8.689e-03   1.484  0.15862    
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.5257 on 15 degrees of freedom 
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Multiple R-squared:  0.5456,    Adjusted R-squared:  0.4547  

F-statistic: 6.003 on 3 and 15 DF,  p-value: 0.006763 

 

> AIC(swp9.event) 
[1] 34.99005 

> correct34 <- (AIC(swp9.event) + (40/14)) 

> correct34 
[1] 37.84719 

>  

> ##SWP equation 10 - event version## 
>  

> swp10.event <- lm(log(swp.cpue + 1) ~ log(fmwt) + ndoi + swp.omr + swp.ntu, data = event.swp) 

>  
> summary(swp10.event) 

 

Call: 
lm(formula = log(swp.cpue + 1) ~ log(fmwt) + ndoi + swp.omr +  

    swp.ntu, data = event.swp) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.74114 -0.31460 -0.00461  0.25055  0.94527  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -3.033e+00  9.055e-01  -3.350  0.00477 ** 

log(fmwt)    3.068e-01  8.491e-02   3.614  0.00282 ** 
ndoi         2.930e-01  1.431e-01   2.047  0.05989 .  

swp.omr     -1.030e-04  2.967e-05  -3.471  0.00375 ** 

swp.ntu      1.604e-02  8.039e-03   1.995  0.06583 .  
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.4773 on 14 degrees of freedom 

Multiple R-squared:  0.6503,    Adjusted R-squared:  0.5503  

F-statistic: 6.508 on 4 and 14 DF,  p-value: 0.003553 
 

> AIC(swp10.event) 

[1] 32.01452 
> correct35 <- (AIC(swp10.event) + (60/13)) 

> correct35 

[1] 36.6299 
>  

> ##Raw salvage event base model## 

>  
> swp.raw.event.base <- lm(log(swp.salv + 1) ~ log(fmwt), data = event.swp) 

>  

> summary(swp.raw.event.base) 
 

Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt), data = event.swp) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-2.9893 -1.3359  0.2073  1.3810  3.2247  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   0.5139     1.6853   0.305  0.76412    

log(fmwt)     1.1166     0.3208   3.480  0.00286 ** 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 1.855 on 17 degrees of freedom 

Multiple R-squared:  0.416,     Adjusted R-squared:  0.3817  

F-statistic: 12.11 on 1 and 17 DF,  p-value: 0.002865 
 

>  

> AIC(swp.raw.event.base) 
[1] 81.28008 
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> correct77 <- (AIC(swp.raw.event.base) + (12/16)) 

> correct77 

[1] 82.03008 

>  
> ##SWP equation 11 - event version## 

>  

> swp11.event <- lm(log(swp.salv + 1) ~ log(fmwt) + ndoi, data = event.swp) 
>  

> summary(swp11.event) 

 
Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + ndoi, data = event.swp) 

 
Residuals: 

    Min      1Q  Median      3Q     Max  

-3.2523 -1.2851  0.3293  1.2362  3.3179  
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   1.2956     2.8279   0.458  0.65300    

log(fmwt)     1.0961     0.3346   3.276  0.00476 ** 

ndoi         -0.1835     0.5251  -0.350  0.73125    
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 1.905 on 16 degrees of freedom 

Multiple R-squared:  0.4205,    Adjusted R-squared:  0.348  
F-statistic: 5.804 on 2 and 16 DF,  p-value: 0.01272 

 

> AIC(swp11.event) 
[1] 83.13556 

> correct80 <- (AIC(swp11.event) + (24/15)) 

> correct80 
[1] 84.73556 

>  

>  
> ##SWP equation 12 - event version## 

>  

> swp12.event <- lm(log(swp.salv + 1) ~ log(fmwt) + swp.exp, data = event.swp) 
>  

> summary(swp12.event) 

 
Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + swp.exp, data = event.swp) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-2.39939 -0.61349 -0.04827  0.93844  1.78646  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.104e+00  1.411e+00  -1.490  0.15557    

log(fmwt)    9.038e-01  2.427e-01   3.723  0.00185 ** 

swp.exp      1.070e-10  2.737e-11   3.909  0.00125 ** 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.367 on 16 degrees of freedom 

Multiple R-squared:  0.7013,    Adjusted R-squared:  0.6639  

F-statistic: 18.78 on 2 and 16 DF,  p-value: 6.341e-05 
 

> AIC(swp12.event) 

[1] 70.54432 
> correct8 <- (AIC(swp12.event) + (24/15)) 

> correct8 

[1] 72.14432 
>  

> plot(swp12.event) 

> 
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##SWP equation 13 - event version## 
>  

> swp13.event <- lm(log(swp.salv + 1) ~ log(fmwt) + swp.omr, data = event.swp) 

>  
> summary(swp13.event) 

 

Call: 
lm(formula = log(swp.salv + 1) ~ log(fmwt) + swp.omr, data = event.swp) 

 

Residuals: 
    Min      1Q  Median      3Q     Max  

-2.6447 -1.0896  0.1504  1.3097  2.5764  

 
Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.4446908  1.5879464  -0.280  0.78303    
log(fmwt)    1.0424395  0.2924513   3.564  0.00259 ** 

swp.omr     -0.0002067  0.0000949  -2.178  0.04473 *  

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.679 on 16 degrees of freedom 

Multiple R-squared:  0.5496,    Adjusted R-squared:  0.4933  
F-statistic:  9.76 on 2 and 16 DF,  p-value: 0.001695 

 

> AIC(swp13.event) 
[1] 78.3476 

> correct9 <- (AIC(swp13.event) + (24/15)) 

> correct9 
[1] 79.9476 

>  

>  
> ##SWP equation 14 - event version## 

>  

> swp14.event <- lm(log(swp.salv + 1) ~ log(fmwt) + swp.ntu, data = event.swp) 
>  

> summary(swp14.event) 

 

Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + swp.ntu, data = event.swp) 

 
Residuals: 

    Min      1Q  Median      3Q     Max  

-2.3644 -1.2774 -0.2005  0.9211  3.1877  
 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -1.23418    1.92606  -0.641  0.53074    

log(fmwt)    1.18622    0.30877   3.842  0.00144 ** 
swp.ntu      0.04726    0.02872   1.645  0.11938    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 1.768 on 16 degrees of freedom 

Multiple R-squared:  0.5006,    Adjusted R-squared:  0.4381  
F-statistic: 8.018 on 2 and 16 DF,  p-value: 0.003872 

 

> AIC(swp14.event) 
[1] 80.30972 

> correct10 <- (AIC(swp14.event) + (24/15)) 

> correct10 
[1] 81.90972 

>  

> ##SWP equation 15 - event version## 
>  

> swp15.event <- lm(log(swp.salv + 1) ~ log(fmwt) + swp.omr_ntu, data = event.swp) 

>  
> summary(swp15.event) 

 

Call: 
lm(formula = log(swp.salv + 1) ~ log(fmwt) + swp.omr_ntu, data = event.swp) 

 

Residuals: 
    Min      1Q  Median      3Q     Max  

-1.9243 -0.8172 -0.2095  1.0322  1.9225  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.187828   1.277371  -0.930 0.366241     
log(fmwt)    1.089201   0.230261   4.730 0.000226 *** 

swp.omr_ntu -0.012000   0.002907  -4.127 0.000790 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.331 on 16 degrees of freedom 
Multiple R-squared:  0.7172,    Adjusted R-squared:  0.6818  

F-statistic: 20.28 on 2 and 16 DF,  p-value: 4.096e-05 

 
> AIC(swp15.event) 
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[1] 69.50593 

> correct11 <- (AIC(swp15.event) + (24/15)) 

> correct11 

[1] 71.10593 
>  

> ##SWP equation 16 - event version## 

>  
> swp16.event <- lm(log(swp.salv + 1) ~ log(fmwt) + swp.omr + swp.ntu, data = event.swp) 

>  

> summary(swp16.event) 
 

Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + swp.omr + swp.ntu,  
    data = event.swp) 

 

Residuals: 
    Min      1Q  Median      3Q     Max  

-2.0593 -0.9630 -0.2803  1.2387  2.4078  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.854e+00  1.680e+00  -1.699 0.109972     
log(fmwt)    1.117e+00  2.554e-01   4.375 0.000543 *** 

swp.omr     -2.454e-04  8.374e-05  -2.930 0.010339 *   

swp.ntu      6.028e-02  2.407e-02   2.504 0.024291 *   
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 1.456 on 15 degrees of freedom 

Multiple R-squared:  0.6824,    Adjusted R-squared:  0.6189  
F-statistic: 10.74 on 3 and 15 DF,  p-value: 0.0005054 

 

> AIC(swp16.event) 
[1] 73.70979 

> correct12 <- (AIC(swp16.event) + (40/14)) 

> correct12 
[1] 76.56693 

>  

> ##SWP equation 17 - event version## 
>  

> swp17.event <- lm(log(swp.salv + 1) ~ log(fmwt) + ndoi + swp.omr + swp.ntu, data = event.swp) 

>  
> summary(swp17.event) 

 

Call: 
lm(formula = log(swp.salv + 1) ~ log(fmwt) + ndoi + swp.omr +  

    swp.ntu, data = event.swp) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-2.38781 -0.90550  0.01102  1.06845  2.11195  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.933e+00  2.773e+00  -1.779 0.096941 .   

log(fmwt)    1.158e+00  2.600e-01   4.456 0.000543 *** 

ndoi         4.139e-01  4.383e-01   0.944 0.361002     

swp.omr     -2.780e-04  9.085e-05  -3.060 0.008486 **  

swp.ntu      6.473e-02  2.461e-02   2.630 0.019785 *   

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.461 on 14 degrees of freedom 
Multiple R-squared:  0.7014,    Adjusted R-squared:  0.6161  

F-statistic: 8.221 on 4 and 14 DF,  p-value: 0.001251 

 
> AIC(swp17.event) 

[1] 74.53647 

> correct13 <- (AIC(swp17.event) + (60/13)) 
> correct13 
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[1] 79.15185 

>  

>  

> ##SWP equation 18 - event version## 
>  

> swp18.event <- lm(log(swp.salv + 1) ~ log(fmwt) + swp.exp + swp.ntu, data = event.swp) 

>  
> summary(swp18.event) 

 

Call: 
lm(formula = log(swp.salv + 1) ~ log(fmwt) + swp.exp + swp.ntu,  

    data = event.swp) 

 
Residuals: 

    Min      1Q  Median      3Q     Max  

-2.1681 -0.6291  0.1225  0.3663  2.0472  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -2.860e+00  1.547e+00  -1.849  0.08428 .  

log(fmwt)    9.591e-01  2.453e-01   3.911  0.00139 ** 

swp.exp      9.846e-11  2.812e-11   3.502  0.00321 ** 
swp.ntu      2.608e-02  2.282e-02   1.143  0.27097    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 1.354 on 15 degrees of freedom 
Multiple R-squared:  0.7252,    Adjusted R-squared:  0.6702  

F-statistic:  13.2 on 3 and 15 DF,  p-value: 0.000175 

 
> AIC(swp18.event) 

[1] 70.95775 

> correct14 <- (AIC(swp18.event) + (60/13)) 
> correct14 

[1] 75.57314 

>  
> plot(swp18.event) 
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>  
> ##SWP equation 19 - event version## 

>  

> swp19.event <- lm(log(swp.salv + 1) ~ log(fmwt) + ndoi + swp.exp + swp.ntu, data = event.swp) 
>  

> summary(swp19.event) 

 
Call: 

lm(formula = log(swp.salv + 1) ~ log(fmwt) + ndoi + swp.exp +  

    swp.ntu, data = event.swp) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-2.2731 -0.6632  0.1240  0.4052  2.0922  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -3.601e+00  2.451e+00  -1.469  0.16397    

log(fmwt)    9.731e-01  2.549e-01   3.818  0.00188 ** 
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ndoi         1.565e-01  3.937e-01   0.397  0.69703    

swp.exp      1.006e-10  2.946e-11   3.416  0.00417 ** 

swp.ntu      2.664e-02  2.353e-02   1.132  0.27661    

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.394 on 14 degrees of freedom 
Multiple R-squared:  0.7283,    Adjusted R-squared:  0.6506  

F-statistic:  9.38 on 4 and 14 DF,  p-value: 0.000667 

 
> AIC(swp19.event) 

[1] 72.74458 

> correct15 <- (AIC(swp19.event) + (60/13)) 
> correct15 

[1] 77.35996 

>  
> ##Now the CVP event models## 

>  

> ##Next, I'm opening a new file for CVP event data comparisons.  This file excluded years of 0 CVP salvage == 2014## 

>  

> event.cvp <- read.csv(file.choose("AdultSalvageR_March2015_CVPEvent.csv"),header=TRUE) 

>  
> ##CVP CPUE event base model## 

>  

> cvp30 <- lm(log(cvp.cpue + 1) ~ log(fmwt), data = event.cvp) 
>  

> summary(cvp30) 
 

Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt), data = event.cvp) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-0.92751 -0.22699  0.02687  0.13661  1.01992  

 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.74223    0.39152  -1.896  0.07331 .  

log(fmwt)    0.27661    0.07655   3.614  0.00185 ** 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.4705 on 19 degrees of freedom 

Multiple R-squared:  0.4073,    Adjusted R-squared:  0.3761  

F-statistic: 13.06 on 1 and 19 DF,  p-value: 0.00185 
 

>  

> AIC(cvp30) 
[1] 31.82766 

> correct30.1 <- (AIC(cvp30) + (12/18)) 

> correct30.1 
[1] 32.49432 

>  

> ##CVP equation 5 - event version## 
>  

> cvp5.event <- lm(log(cvp.cpue + 1) ~ log(fmwt) + ndoi, data = event.cvp) 

>  

> summary(cvp5.event) 

 

Call: 
lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + ndoi, data = event.cvp) 

 

Residuals: 
    Min      1Q  Median      3Q     Max  

-0.7537 -0.3099 -0.0512  0.1840  0.9116  

 
Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -1.7041     0.6402  -2.662 0.015884 *   
log(fmwt)     0.3051     0.0738   4.134 0.000623 *** 
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ndoi          0.2205     0.1199   1.839 0.082495 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.4435 on 18 degrees of freedom 

Multiple R-squared:  0.5011,    Adjusted R-squared:  0.4456  

F-statistic: 9.038 on 2 and 18 DF,  p-value: 0.001916 
 

> AIC(cvp5.event) 

[1] 30.21255 
> correct34.1 <- (AIC(cvp5.event) + (24/17)) 

> correct34.1 

[1] 31.62431 
>  

> ##CVP equation 6 - event version## 

>  
> cvp6.event <- lm(log(cvp.cpue + 1) ~ log(fmwt) + cvp.omr, data = event.cvp) 

>  

> summary(cvp6.event) 

 

Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + cvp.omr, data = event.cvp) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-0.91270 -0.23571  0.01808  0.13978  0.98030  

 
Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -7.916e-01  4.139e-01  -1.913  0.07183 .  
log(fmwt)    2.725e-01  7.868e-02   3.463  0.00277 ** 

cvp.omr     -1.182e-05  2.555e-05  -0.463  0.64910    

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.4805 on 18 degrees of freedom 
Multiple R-squared:  0.4143,    Adjusted R-squared:  0.3492  

F-statistic: 6.366 on 2 and 18 DF,  p-value: 0.008112 

 
> AIC(cvp6.event) 

[1] 33.57931 

> correct31.1 <- (AIC(cvp6.event) + (24/17)) 
> correct31.1 

[1] 34.99108 

>  
> ##CVP equation 7 - event version## 

>  

> cvp7.event <- lm(log(cvp.cpue + 1) ~ log(fmwt) + cvp.ntu, data = event.cvp) 
>  

> summary(cvp7.event) 

 
Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + cvp.ntu, data = event.cvp) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-0.73741 -0.27014  0.00848  0.16740  1.00133  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.157146   0.405594  -2.853 0.010564 *   

log(fmwt)    0.279161   0.069993   3.988 0.000862 *** 

cvp.ntu      0.013801   0.006345   2.175 0.043181 *   
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.4302 on 18 degrees of freedom 

Multiple R-squared:  0.5307,    Adjusted R-squared:  0.4785  

F-statistic: 10.18 on 2 and 18 DF,  p-value: 0.001104 
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> AIC(cvp7.event) 

[1] 28.92643 

> correct32.1 <- (AIC(cvp7.event) + (24/17)) 

> correct32.1 
[1] 30.3382 

>  

> ##CVP equation 8 - event version## 
>  

> cvp8.event <- lm(log(cvp.cpue + 1) ~ log(fmwt) + cvp.omr_ntu, data = event.cvp) 

>  
> summary(cvp8.event) 

 

Call: 
lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + cvp.omr_ntu, data = event.cvp) 

 

Residuals: 
     Min       1Q   Median       3Q      Max  

-0.81754 -0.19694  0.00452  0.26853  0.80832  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.8901813  0.3818831  -2.331  0.03158 *  
log(fmwt)    0.2663033  0.0730243   3.647  0.00184 ** 

cvp.omr_ntu -0.0015488  0.0008917  -1.737  0.09949 .  

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.4474 on 18 degrees of freedom 

Multiple R-squared:  0.4924,    Adjusted R-squared:  0.436  

F-statistic:  8.73 on 2 and 18 DF,  p-value: 0.002237 
 

> AIC(cvp8.event) 

[1] 30.57378 
> correct33.1 <- (AIC(cvp8.event) + (24/17)) 

> correct33.1 

[1] 31.98554 
>  

>  

> ##CVP equation 9 - event version## 
>  

> cvp9.event <- lm(log(cvp.cpue + 1) ~ log(fmwt) + cvp.omr + cvp.ntu, data = event.cvp) 

>  
> summary(cvp9.event) 

 

Call: 
lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + cvp.omr + cvp.ntu,  

    data = event.cvp) 

 
Residuals: 

     Min       1Q   Median       3Q      Max  

-0.69081 -0.29111  0.04633  0.22787  0.92272  
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.292e+00  4.287e-01  -3.014  0.00782 ** 

log(fmwt)    2.715e-01  7.051e-02   3.850  0.00128 ** 

cvp.omr     -2.294e-05  2.339e-05  -0.981  0.34057    

cvp.ntu      1.510e-02  6.488e-03   2.327  0.03256 *  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.4306 on 17 degrees of freedom 

Multiple R-squared:  0.5558,    Adjusted R-squared:  0.4774  
F-statistic: 7.091 on 3 and 17 DF,  p-value: 0.002689 

 

> AIC(cvp9.event) 
[1] 29.77114 

> correct303 <- (AIC(cvp9.event) + (5/2)) 

> correct303 
[1] 32.27114 
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>  

>  

> ##CVP equation 10 - event version## 

>  
> cvp10.event <- lm(log(cvp.cpue + 1) ~ log(fmwt) + ndoi + cvp.omr + cvp.ntu, data = event.cvp) 

>  

> summary(cvp10.event) 
 

Call: 

lm(formula = log(cvp.cpue + 1) ~ log(fmwt) + ndoi + cvp.omr +  
    cvp.ntu, data = event.cvp) 

 

Residuals: 
     Min       1Q   Median       3Q      Max  

-0.49745 -0.28385  0.03476  0.18797  0.74372  

 
Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.645e+00  5.999e-01  -4.409 0.000439 *** 

log(fmwt)    3.048e-01  6.054e-02   5.034 0.000122 *** 

ndoi         2.837e-01  1.005e-01   2.823 0.012234 *   

cvp.omr     -3.383e-05  2.007e-05  -1.685 0.111296     
cvp.ntu      1.741e-02  5.525e-03   3.152 0.006174 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.3626 on 16 degrees of freedom 
Multiple R-squared:  0.7035,    Adjusted R-squared:  0.6294  

F-statistic: 9.492 on 4 and 16 DF,  p-value: 0.0003956 

 
> AIC(cvp10.event) 

[1] 23.28092 

> correct39 <- (AIC(cvp10.event) + (60/15)) 
> correct39 

[1] 27.28092 

>  
> ##CVP raw salvage event base model## 

>  

> cvp.raw.event.base <- lm(log(cvp.salv + 1) ~ log(fmwt), data = event.cvp) 
>  

> summary(cvp.raw.event.base) 

 
Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt), data = event.cvp) 

 
Residuals: 

    Min      1Q  Median      3Q     Max  

-2.2482 -1.1839  0.2224  0.9838  2.3538  
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.6904     1.1298   1.496 0.151017     

log(fmwt)     0.8580     0.2209   3.884 0.000998 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.358 on 19 degrees of freedom 

Multiple R-squared:  0.4426,    Adjusted R-squared:  0.4133  

F-statistic: 15.09 on 1 and 19 DF,  p-value: 0.0009977 

 
>  

> AIC(cvp.raw.event.base) 

[1] 76.33722 
> correct7.1 <- (AIC(cvp.raw.event.base) + (12/18)) 

> correct7.1 

[1] 77.00389 
>  

> ##CVP equation 11 - event version## 

>  
> cvp11.event <- lm(log(cvp.salv + 1) ~ log(fmwt) + ndoi, data = event.cvp) 
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>  

> summary(cvp11.event) 

 

Call: 
lm(formula = log(cvp.salv + 1) ~ log(fmwt) + ndoi, data = event.cvp) 

 

Residuals: 
     Min       1Q   Median       3Q      Max  

-2.27606 -1.04217  0.05901  0.98738  2.17752  

 
Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -0.5103     1.9107  -0.267 0.792437     
log(fmwt)     0.9232     0.2203   4.191 0.000549 *** 

ndoi          0.5044     0.3578   1.410 0.175690     

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.324 on 18 degrees of freedom 

Multiple R-squared:  0.498,     Adjusted R-squared:  0.4423  

F-statistic:  8.93 on 2 and 18 DF,  p-value: 0.002023 

 
> AIC(cvp11.event) 

[1] 76.13821 

> correct98 <- (AIC(cvp11.event) + (24/17)) 
> correct98 

[1] 77.54998 
>  

> ##CVP equation 12 - event version## 

>  
> cvp12.event <- lm(log(cvp.salv + 1) ~ log(fmwt) + cvp.exp, data = event.cvp) 

>  

> summary(cvp12.event) 
 

Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + cvp.exp, data = event.cvp) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-2.18858 -0.78212 -0.09724  0.81038  1.94965  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.229e+00  1.788e+00  -0.688 0.500474     

log(fmwt)    8.248e-01  2.056e-01   4.011 0.000819 *** 
cvp.exp      1.050e-10  5.206e-11   2.016 0.058943 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 1.26 on 18 degrees of freedom 

Multiple R-squared:  0.5453,    Adjusted R-squared:  0.4948  
F-statistic: 10.79 on 2 and 18 DF,  p-value: 0.0008305 

 

> AIC(cvp12.event) 
[1] 74.06078 

> correct8.1 <- (AIC(cvp12.event) + (24/17)) 

> correct8.1 

[1] 75.47255 

>  

>  
> ##CVP equation 13 - event version## 

>  

> cvp13.event <- lm(log(cvp.salv + 1) ~ log(fmwt) + cvp.omr, data = event.cvp) 
>  

> summary(cvp13.event) 

 
Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + cvp.omr, data = event.cvp) 

 
Residuals: 
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    Min      1Q  Median      3Q     Max  

-2.2119 -1.2053  0.2237  0.9818  2.2565  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)    

(Intercept)  1.569e+00  1.196e+00   1.312  0.20608    

log(fmwt)    8.480e-01  2.274e-01   3.729  0.00154 ** 
cvp.omr     -2.904e-05  7.386e-05  -0.393  0.69881    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 1.389 on 18 degrees of freedom 

Multiple R-squared:  0.4474,    Adjusted R-squared:  0.386  
F-statistic: 7.286 on 2 and 18 DF,  p-value: 0.004807 

 

> AIC(cvp13.event) 
[1] 78.15764 

> correct9.1 <- (AIC(cvp13.event) + (24/17)) 

> correct9.1 

[1] 79.56941 

>  

> ##CVP equation 14 - event version## 
>  

> cvp14.event <- lm(log(cvp.salv + 1) ~ log(fmwt) + cvp.ntu, data = event.cvp) 

>  
> summary(cvp14.event) 

 
Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + cvp.ntu, data = event.cvp) 

 
Residuals: 

    Min      1Q  Median      3Q     Max  

-1.5787 -0.8638 -0.1636  0.5745  2.2883  
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.22905    1.09246   0.210 0.836286     

log(fmwt)    0.86701    0.18853   4.599 0.000223 *** 

cvp.ntu      0.04861    0.01709   2.844 0.010759 *   
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 1.159 on 18 degrees of freedom 

Multiple R-squared:  0.6155,    Adjusted R-squared:  0.5727  

F-statistic: 14.41 on 2 and 18 DF,  p-value: 0.0001838 
 

> AIC(cvp14.event) 

[1] 70.5416 
> correct10.1 <- (AIC(cvp14.event) + (24/17)) 

> correct10.1 

[1] 71.95336 
>  

> ##CVP equation 15 - event version## 

>  
> cvp15.event <- lm(log(cvp.salv + 1) ~ log(fmwt) + cvp.omr_ntu, data = event.cvp) 

>  

> summary(cvp15.event) 

 

Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + cvp.omr_ntu, data = event.cvp) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-1.9296 -0.9327  0.1101  0.9107  2.3114  

 

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.261814   1.101250   1.146 0.266883     

log(fmwt)    0.828168   0.210583   3.933 0.000976 *** 
cvp.omr_ntu -0.004487   0.002571  -1.745 0.098051 .   
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.29 on 18 degrees of freedom 
Multiple R-squared:  0.5233,    Adjusted R-squared:  0.4703  

F-statistic: 9.879 on 2 and 18 DF,  p-value: 0.001272 

 
> AIC(cvp15.event) 

[1] 75.05543 

> correct11.1 <- (AIC(cvp15.event) + (24/17)) 
> correct11.1 

[1] 76.4672 

>  
> ##CVP equation 16 - event version## 

>  

> cvp16.event <- lm(log(cvp.salv + 1) ~ log(fmwt) + cvp.omr + cvp.ntu, data = event.cvp) 
>  

> summary(cvp16.event) 

 

Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + cvp.omr + cvp.ntu,  

    data = event.cvp) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  
-1.4970 -0.6370 -0.2267  0.6739  2.0566  

 
Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.684e-01  1.148e+00  -0.147 0.885122     
log(fmwt)    8.443e-01  1.888e-01   4.471 0.000336 *** 

cvp.omr     -6.763e-05  6.265e-05  -1.079 0.295472     

cvp.ntu      5.244e-02  1.738e-02   3.018 0.007757 **  
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 1.153 on 17 degrees of freedom 

Multiple R-squared:  0.6401,    Adjusted R-squared:  0.5766  

F-statistic: 10.08 on 3 and 17 DF,  p-value: 0.0004767 
 

> AIC(cvp16.event) 

[1] 71.14944 
> correct50 <- (AIC(cvp16.event) + (36/16)) 

> correct50 

[1] 73.39944 
>  

> ##CVP equation 17 - event version## 

>  
> cvp17.event <- lm(log(cvp.salv + 1) ~ log(fmwt) + ndoi + cvp.omr + cvp.ntu, data = event.cvp) 

>  

> summary(cvp17.event) 
 

Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + ndoi + cvp.omr +  
    cvp.ntu, data = event.cvp) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-1.90695 -0.48876  0.05371  0.39582  1.61477  

 
Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -3.507e+00  1.666e+00  -2.105  0.05144 .   
log(fmwt)    9.265e-01  1.681e-01   5.511 4.74e-05 *** 

ndoi         7.002e-01  2.791e-01   2.509  0.02325 *   

cvp.omr     -9.452e-05  5.575e-05  -1.695  0.10935     
cvp.ntu      5.814e-02  1.534e-02   3.790  0.00161 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Residual standard error: 1.007 on 16 degrees of freedom 

Multiple R-squared:  0.7417,    Adjusted R-squared:  0.6772  

F-statistic: 11.49 on 4 and 16 DF,  p-value: 0.0001372 

 
> AIC(cvp17.event) 

[1] 66.18202 

> correct51 <- (AIC(cvp17.event) + (36/16)) 
> correct51 

[1] 68.43202 

>  
##CVP equation 18 - event version## 

>  

> cvp18.event <- lm(log(cvp.salv + 1) ~ log(fmwt) + cvp.exp + cvp.ntu, data = event.cvp) 
>  

> summary(cvp18.event) 

 
Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + cvp.exp + cvp.ntu,  

    data = event.cvp) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  
-1.3496 -0.6902 -0.1895  0.9020  1.5659  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.686e+00  1.518e+00  -1.769 0.094757 .   
log(fmwt)    8.338e-01  1.667e-01   5.002 0.000109 *** 

cvp.exp      1.048e-10  4.219e-11   2.484 0.023698 *   

cvp.ntu      4.857e-02  1.506e-02   3.225 0.004975 **  
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 1.021 on 17 degrees of freedom 

Multiple R-squared:  0.7179,    Adjusted R-squared:  0.6681  

F-statistic: 14.42 on 3 and 17 DF,  p-value: 6.323e-05 
 

> AIC(cvp18.event) 

[1] 66.03758 
> correct12.1 <- (AIC(cvp18.event) + (5/2)) 

> correct12.1 

[1] 68.53758 
>  

> plot(cvp18.event) 
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>  
> ##CVP equation 19 - event version## 

>  

> cvp19.event <- lm(log(cvp.salv + 1) ~ log(fmwt) + ndoi + cvp.exp + cvp.ntu, data = event.cvp) 
>  

> summary(cvp19.event) 

 
Call: 

lm(formula = log(cvp.salv + 1) ~ log(fmwt) + ndoi + cvp.exp +  

    cvp.ntu, data = event.cvp) 
 

Residuals: 

     Min       1Q   Median       3Q      Max  
-1.44428 -0.72364 -0.03602  0.62326  1.15539  

 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -6.068e+00  1.703e+00  -3.563 0.002594 **  

log(fmwt)    9.196e-01  1.413e-01   6.508 7.22e-06 *** 
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ndoi         6.828e-01  2.315e-01   2.950 0.009414 **  

cvp.exp      1.149e-10  3.517e-11   3.267 0.004841 **  

cvp.ntu      5.265e-02  1.257e-02   4.188 0.000696 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.8471 on 16 degrees of freedom 
Multiple R-squared:  0.8173,    Adjusted R-squared:  0.7716  

F-statistic: 17.89 on 4 and 16 DF,  p-value: 9.371e-06 

 
> AIC(cvp19.event) 

[1] 58.91782 

> correct120 <- (AIC(cvp19.event) + (60/15)) 
> correct120 

[1] 62.91782 

 
 

 

GAM code 

R version 3.1.0 (2014-04-10) -- "Spring Dance" 
Copyright (C) 2014 The R Foundation for Statistical Computing 

Platform: x86_64-w64-mingw32/x64 (64-bit) 

 
R is free software and comes with ABSOLUTELY NO WARRANTY. 

You are welcome to redistribute it under certain conditions. 

Type 'license()' or 'licence()' for distribution details. 
 

  Natural language support but running in an English locale 

 
R is a collaborative project with many contributors. 

Type 'contributors()' for more information and 

'citation()' on how to cite R or R packages in publications. 
 

Type 'demo()' for some demos, 'help()' for on-line help, or 

'help.start()' for an HTML browser interface to help. 
Type 'q()' to quit R. 

 

> ##Here is GAM code that I tried on May 19, 2015 applied to the SWP event data file - to check for thresholds per Scott's email to Lenny## 

>  

> ##Not gonna lie - this is an example that was refined based on initial tooling around## 

>  
> ##I'm re-opening the file for SWP event data comparisons.  This file excluded years of 0 SWP salvage == 2007, 2011, 2014## 

>  

> ##I chose this to explore the exports vs OMR issue and the "why" the SWP models didn't explain as much variance as the CVP models## 
>  

> event.swp <- read.csv(file.choose("AdultSalvageR_March2015_SWPEvent.csv"),header=TRUE) 

> library(mgcv) 
Loading required package: nlme 

This is mgcv 1.7-29. For overview type 'help("mgcv-package")'. 

>  
> ##mgcv does GAM## 

>  

>  
> gam1 <- gam(formula = log(swp.salv) ~ log(fmwt) + s(omr, bs = "cr"), data = event.swp) 

>  

> summary(gam1) 
 

Family: gaussian  

Link function: identity  
 

Formula: 

log(swp.salv) ~ log(fmwt) + s(omr, bs = "cr") 
 

Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)   

(Intercept)   2.1814     1.7273   1.263   0.2310   

log(fmwt)     0.7854     0.3334   2.356   0.0367 * 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Approximate significance of smooth terms: 

        edf Ref.df     F p-value 

s(omr) 5.21      6 2.261   0.109 

 
R-sq.(adj) =  0.624   Deviance explained = 75.4% 

GCV score = 3.4315  Scale est. = 2.1293    n = 19 

>  
> AIC(gam1) 

[1] 75.63319 

>  
> plot(gam1, pages = 1, residuals = T, pch = 19, cex = 0.25, scheme = 1, color = "black", shade = T, shade.color = gray) 

There were 18 warnings (use warnings() to see them) 

>  
> p1 <- predict(gam1) 

>  

> gam2 <- gam(formula = log(swp.salv) ~ log(fmwt) + s(swp.exp, bs = "cr"), data = event.swp) 
>  

> summary(gam2) 

 

Family: gaussian  

Link function: identity  

 
Formula: 

log(swp.salv) ~ log(fmwt) + s(swp.exp, bs = "cr") 

 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.5113     1.2865   1.175  0.25727    

log(fmwt)     0.9173     0.2453   3.739  0.00179 ** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 
              edf Ref.df     F p-value    

s(swp.exp) 0.9999      1 15.05 0.00122 ** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.663   Deviance explained = 70.1% 
GCV score = 2.2677  Scale est. = 1.9096    n = 19 

>  

> AIC(gam2) 
[1] 70.94578 

>  

> plot(gam2, pages = 1, residuals = T, pch = 19, cex = 0.25, scheme = 1, color = "black", shade = T, shade.color = gray) 
There were 18 warnings (use warnings() to see them) 

>  

> p2 <- predict(gam2) 
> plot(p1, p2, xlab = "GAM prediction of FMWT + OMR (Dec 1 - Mar 31)", ylab = "GAM prediction of FMWT + Exports (Dec 1 - Mar 31)") 

> gam3 <- gam(formula = log(swp.salv) ~ log(fmwt) + s(swp.omr, bs = "cr"), data = event.swp) 

>  
> summary(gam3) 

 

Family: gaussian  
Link function: identity  

 

Formula: 

log(swp.salv) ~ log(fmwt) + s(swp.omr, bs = "cr") 

 

Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   1.2345     1.3249   0.932  0.36619    

log(fmwt)     0.9717     0.2525   3.848  0.00158 ** 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Approximate significance of smooth terms: 

             edf Ref.df     F p-value   

s(swp.omr) 1.979  2.341 5.229  0.0155 * 
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.637   Deviance explained = 69.7% 

GCV score = 2.6003  Scale est. = 2.0557    n = 19 
>  

> AIC(gam3) 

[1] 73.10472 
>  

> plot(gam3, pages = 1, residuals = T, pch = 19, cex = 0.25, scheme = 1, color = "black", shade = T, shade.color = gray) 

There were 18 warnings (use warnings() to see them) 
>  

> p3 <- predict(gam3) 

> plot(p1, p3, xlab = "GAM prediction of FMWT + OMR (Dec 1 - Mar 31)", ylab = "GAM prediction of FMWT + SWP event OMR") 
> gam4 <- gam(formula = log(swp.salv) ~ log(fmwt) + s(swp.ntu, bs = "cr"), data = event.swp) 

>  

> summary(gam4) 
 

Family: gaussian  

Link function: identity  

 

Formula: 

log(swp.salv) ~ log(fmwt) + s(swp.ntu, bs = "cr") 
 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.0667     1.6296   0.041  0.96786    

log(fmwt)     1.2015     0.3104   3.871  0.00136 ** 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Approximate significance of smooth terms: 

           edf Ref.df     F p-value 

s(swp.ntu)   1      1 2.767   0.115 
 

R-sq.(adj) =  0.443   Deviance explained = 50.4% 

GCV score = 3.7519  Scale est. = 3.1595    n = 19 
>  

> AIC(gam4) 

[1] 80.5123 
>  

> plot(gam4, pages = 1, residuals = T, pch = 19, cex = 0.25, scheme = 1, color = "black", shade = T, shade.color = gray) 

There were 18 warnings (use warnings() to see them) 
>  

> p4 <- predict(gam4) 

> plot(p1, p4, xlab = "GAM prediction of FMWT + OMR (Dec 1 - Mar 31)", ylab = "GAM prediction of FMWT + SWP event turbidity") 
> gam5 <- gam(formula = log(swp.salv) ~ log(fmwt) + s(swp.omr_ntu, bs = "cr"), data = event.swp) 

>  

> summary(gam5) 
 

Family: gaussian  

Link function: identity  
 

Formula: 

log(swp.salv) ~ log(fmwt) + s(swp.omr_ntu, bs = "cr") 
 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.5661     1.2198   0.464 0.648819     

log(fmwt)     1.1032     0.2322   4.751 0.000217 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 
                  edf Ref.df    F  p-value     

s(swp.omr_ntu) 0.9982      1 16.9 0.000726 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.682   Deviance explained = 71.8% 
GCV score =  2.138  Scale est. = 1.8006    n = 19 
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>  

> AIC(gam5) 

[1] 69.82761 

>  
> plot(gam5, pages = 1, residuals = T, pch = 19, cex = 0.25, scheme = 1, color = "black", shade = T, shade.color = gray) 

There were 18 warnings (use warnings() to see them) 

>  
> p5 <- predict(gam5) 

> plot(p1, p5, xlab = "GAM prediction of FMWT + OMR (Dec 1 - Mar 31)", ylab = "GAM prediction of FMWT + SWP first flush (event)") 

> cor(p1, p2) 
[1] 0.9237702 

> cor(p1, p3) 

[1] 0.8774454 
> cor(p1, p4) 

[1] 0.7844431 

> cor(p1, p5) 
[1] 0.8582036 

> cor(p2, p3) 

[1] 0.9124424 

> cor(p2, p4) 

[1] 0.7737601 

> cor(p2, p5) 
[1] 0.9209004 

> cor(p3, p4) 

[1] 0.7525294 
> cor(p3, p5) 

[1] 0.9040712 
> cor(p4, p5) 

[1] 0.8189081 

> 
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Abstract 

Managing endangered species presents many challenges when it becomes difficult to detect their 

presence in the wild. In the San Francisco Estuary, Delta Smelt (Hypomesus transpacificus) has declined 

to record low numbers in the long-term monitoring surveys which has elevated concern over their 

entrainment at the State Water Project (SWP) and Central Valley Project (CVP) water diversions. The 

objective of this paper was to revisit previous work on factors that affect adult Delta Smelt catches 

(salvage) at the SWP and CVP fish screens with updated conceptual models and new statistical 

approaches to determine factors that affect entrainment risk at time scales useful for resource managers. 

Analyses focused on describing salvage at an annual scale and during the onset of winter storms (first 

flush) that historically resulted in high salvage of adult Delta Smelt. Boosted Regression Tree (BRT) 

analysis was used to explore relationships between adult Delta Smelt salvage and a large suite of physical 

and biological predictor variables. Negative binomial models, Generalized Additive Models (GAM) and 

General Linear Models (GLMs) were than applied to the salvage data to test how a smaller set of 

variables identified from the BRT and revised conceptual models affected adult Delta Smelt salvage. 

Overall, the BRT found that exports, previous sub-adult abundance, and water temperature were 

important factors that described the onset of adult Delta Smelt salvage. Negative binomial and GAM 

models provided somewhat consistent results, showing an importance of SWP and CVP exports, previous 

sub-adult abundance, suspended sediment, and turbidity as important factors that affected Delta Smelt 

entrainment risk. Annual salvage was best explained by SWP and CVP exports and previous sub-adult 

abundance. Results from this study improve upon previous analyses of salvage data and provide a 

framework for understanding factors that best explain entrainment risk conditions during the onset of 

winter storms when they are most vulnerable to salvage.  The results presented in this study can be 

applied by resource managers to develop strategies for reducing adult Delta Smelt entrainment risk, even 

when their population is low and it is difficult to detect their presence in the wild.  
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Introduction 

Over the last couple of decades, fisheries management has redirected its focus from individual 

species to broader ecosystem objectives to address inherent complexities of aquatic environments (Link 

2002, Hall and Mainprize 2004, Pikitch et al. 2004). For rare species, management objectives that focus 

on restoring ecosystem functions is considered desirable because it places an emphasis on the 

mechanisms that influence their survival and growth rather than on counts of individuals which may be 

difficult to detect as their population numbers decline. For species listed under the federal Endangered 

Species Act (ESA), the law does allow for recovery actions to be carried out through robust adaptive 

management plans that include consideration of habitat quality and quantity, reduced exposure to 

predators and contaminants, and improved access to rearing habitats but the law also requires that 

incidental take1 of endangered species be reasonably minimized or avoided if they are likely to be 

encountered during an authorized activity or project. Recovery plans that can confidently predict when 

listed fish species are likely to be taken or impacted ultimately reduces management uncertainty and can 

help bolster conservation efforts if project activities are effectively timed (Pikitch et al. 2004).  

In the upper San Francisco Estuary, (CA), national attention has been drawn to Delta Smelt 

(Hypomesus transpacificus), a small endangered fish whose numbers have declined to record low levels 

in regional monitoring programs (Sommer et al. 2007). Found nowhere else in the world, Delta Smelt 

seasonally reside within the hydrodynamic influence of two large water diversions that provide municipal 

water for over 23 million Californians (State Water Project, SWP) and support a multibillion dollar 

agricultural industry (Central Valley Project, CVP). When Delta Smelt are located near the SWP and 

CVP pumps, the United Fish and Wildlife Service (USFWS) imposes water diversion reductions to 

minimize entrainment losses (USFWS 2008) which can account for significant population losses in some 

years (Kimmerer 2008, Kimmerer 2011, Miller 2011). Entrainment losses, along with food supply and 

loss of habitat, have been shown to have adverse effects on Delta Smelt’s population growth rate (Mac 

Nally et al. 2010, Kimmerer 2011, Maunder and Deriso 2011, Rose et al. 2013). An improved 

understanding of the mechanisms and factors that affect Delta Smelt entrainment is of high importance to 

managers, scientists and stakeholders charged with protecting the species while at the same time 

providing a reliable water supply to the people and agricultural communities of California.  

Unlike traditional fisheries management where adult harvest can be determined through an 

estimate of stock size and spawner replacement rates  (Deriso 1980), Delta Smelt are an annual species 

whose adult abundance estimates are measured by monthly trawl surveys during the late winter 

 
1 Federal ESA incidental take is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect 

any threatened or endangered species (USFWS 1973) 
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(Interagency Ecological Program 2015) during the same time when they become lost to entrainment 

(Kimmerer 2008, Grimaldo et al. 2009). Therefore, concurrent assessments of water diversion impacts to 

the Delta Smelt population are difficult to estimate because their abundance is not confidently estimated 

until after the bulk of entrainment is likely to have occurred (e.g., see Fig. 11 in Kimmerer 2008). In 

addition, as the population continues to decline and the environment changes, the ability to detect Delta 

Smelt in the wild has also decreased over time (Latour 2015). As a result, managers and scientists cannot 

simply rely on the number of fish observed in surveys near the water diversions or those observed at the 

fish screen louvers (known as “salvage”) in front of the SWP and CVP as the only evidence of 

entrainment risk. Managers and scientists most also consider conditions that are likely to produce higher 

entrainment risk based on historical relationships between salvage and physical-biological factors (Brown 

et al. 2009, Grimaldo et al. 2009).  

In this paper, the conceptual model and factors known to affect Delta Smelt salvage at the SWP 

and CVP (Kimmerer 2008, Grimaldo et al. 2009, Miller 2011, Miller et al. 2012, Interagency Ecological 

Program 2015) are revisited and reexamined with new information and statistical approaches to produce 

an updated model of factors and conditions that most influence Delta Smelt entrainment risk. Note, the 

goal here is not to determine the effects of entrainment losses to the population which has been carried out 

previously and determined to have modest to substantial adverse effects on the Delta Smelt’s population 

growth rate (Kimmerer 2008, Kimmerer 2011, Maunder and Deriso 2011, Miller 2011, Rose et al. 2013). 

The goal here is to determine how entrainment risk, calculated through the number fish salvaged, could be 

reduced in real-time through a more thorough understanding of conditions that produce adult Delta Smelt 

entrainment risk. Our specific study questions are the following: 1) What factors produce the onset of 

entrainment risk? and 2) What factors overall best predict entrainment risk conditions? The answers from 

this study can be used by resource managers to more confidently assign species protection rules while at 

the same time reduce management uncertainty of SWP and CVP water operations to help increase 

California’s water supply reliability.  

Conceptual models revisited 

Previous research on adult Delta Smelt salvage dynamics emphasized that entrainment risk was 

seasonal and influenced by the behavior of fish during the onset of large precipitation events in the winter 

(Grimaldo et al. 2009, Sommer et al. 2011). Known as the “first flush” period, it is believed that increases 

in river inflows and turbidity trigger an upstream spawning migration of Delta Smelt from their low 

salinity (1-6 Practical Salinity Units; PSU) rearing habitats to upstream freshwater spawning habitats of 

the Sacramento-San Joaquin Delta; (herein referred to as the “Delta”; Grimaldo et al. 2009, Sommer et al. 

2011). More recently, Murphy and Hamilton (2013) argue that adult Delta Smelt are not making 

unidirectional migration movements upstream during their spawning phase but rather making shorter 
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dispersal movements from large embayments and channels toward adjacent shoals and marshes that may 

freshen up to support suitable spawning substrate. The migration model explicitly implies that Delta 

Smelt place themselves in entrainment risk through upstream migration movements that place them in 

front of the SWP and CVP pumping plants (Fig 1.). The dispersal model, as presented by Murphy and 

Hamilton (2013), does not offer a mechanism by which adult Delta Smelt get entrained because they are 

not found in channels near the SWP and CVP during the summer and fall prior to first flush periods 

(Nobriga et al. 2008, Sommer and Mejia 2013); during the summer and fall, they are found several 

kilometers downstream (Sommer and Mejia 2013). An extension of Murphy and Hamilton (2013), is that 

adult Delta Smelt expand their distribution upstream during first flush events as suitable habitat (i.e., 

turbidity, see Feyrer et al. 2007; Nobriga et al. 2008; Sommer and Mejia 2013) increases landward. In this 

case, expanding their range landward could result in an increased entrainment risk, especially if the 

channels leading to the SWP and CVP support suitable turbid waters that adult Delta Smelt are most 

associated with (Grimaldo et al. 2009).  

Delta Smelt likely employ a number of behaviors, including short dispersal and longer migration 

movements, during first flush events depending on environmental conditions and their distribution prior 

to when the environment changes (Bennett and Burau 2015). For example, during years of high 

freshwater inflow, some adult Delta Smelt tend to remain in their seaward position as the environment 

freshens up around them which is consistent with the diffuse dispersion conceptual model presented by 

Murphy and Hamilton (2013). A small number of adults may even move downstream to the Napa River 

(tributary to San Pablo Bay) for spawning. However, even during periods of extreme freshwater inflow, a 

small number of Delta Smelt are also found in large numbers in the north Delta (Sommer and Mejia 2013) 

and some even get entrained at the SWP and CVP (Grimaldo et al. 2009), suggesting that some fish 

undertake active behaviors to move them upstream consistent with the spawning migration model 

described by Sommer et al. (2011).  

Focused field studies of Delta Smelt during first flush periods show they aggregate near frontal 

zones at the shoal-channel interface, moving laterally into the shoals on ebb tides and back into the 

channel on flood tides (Bennett and Burau 2015). The results of this study suggest that adult Delta Smelt 

use active behaviors to minimize advection down-estuary during periods of increased inflow (i.e., 

maintain position), and in some cases, use tidal surfing and lateral movements nearshore to facilitate 

movements to upstream spawning habitats. Recognizing that not all Delta Smelt move upstream to 

spawn, the task of determining what behaviors some adult Delta Smelt may use to move to upstream 

spawning habitats is probably best approached using an individual-based model in 2d or 3d 

hydrodynamic flow field model environment (Goodwin et al. 2006, McElroy et al. 2012, Goodwin et al. 

2014).  



6 | P a g e  
 

After review of recent research (Miller et al. 2012, Murphy and Hamilton 2013, Sommer and 

Mejia 2013, Interagency Ecological Program 2015), a revised conceptual model is presented here as a 

framework for implicitly testing hypotheses thought to influence adult Delta Smelt salvage and 

entrainment risk. The revised conceptual model recognizes a hierarchal importance of landscape attributes 

as mechanistic drivers of habitat attributes that potentially may affect Delta Smelt movement and 

ultimately their entrainment risk (Fig. 1). Some of the variables identified in the revised conceptual model 

presented here were overlooked in previous analyses of Delta Smelt salvage (Grimaldo et al. 2009).  In 

some cases, some factors believed to be important were identified but the data remains insufficient 

(temporally and spatially) or unavailable for inclusion in the analyses presented here. For example, food 

may be an important factor that affects their survival and distribution during the first flush and subsequent 

staging period before spawning (IEP 2015) but collections of their key prey (e.g., zooplankton, 

macrocrustaceans, and amphipods) in the estuary are insufficient in time or space to allow inclusion in the 

analysis.    

The revised conceptual model also places emphasis on first flush events as a key process that 

changes the environment and behavior responses of Delta Smelt (Fig. 1). Delta Smelt are salvaged in 

drier years when river inflows are low (i.e., weak or no significant first flush), but in these years, salvage 

levels are typically below that of management concern (USFWS 2008). Grimaldo et al. (2009) noted the 

importance of first flush events and examined intra-annual adult Delta Smelt salvage patterns at monthly 

(December to March) intervals, finding that monthly salvage was influenced by turbidity, X2 (position of 

the 2 PSU bottom isohaline from the Golden Gate Bridge; see (Jassby et al. 1995), and SWP and CVP 

water diversions indexed by net Old and Middle River flow (OMR; see below). This work was important 

in illuminating the importance of turbidity and OMR flow as conditions that predicted within-season 

salvage but perhaps not at a response or temporal scale informative to resource managers who are 

mandated to reduce SWP and CVP water exports during the onset of first flush events (USFWS 2008). 

Where data are available, potential predictor variables identified in the conceptual model are tested here 

(see below). 

Predator mortality in front of the fish louver screens may also play an important role in the 

number of adult Delta Smelt salvaged. Presumably, fish entering the Clifton Court Forebay, the reservoir 

leading to the SWP fish screens, suffer higher pre-screen loss than fish that enter the CVP directly from 

channels of the Delta. Castillo et al. (2012) estimated that the pre-screen mortality rates for several 

experimental groups of Delta Smelt released into Clifton Court Forebay were between 90 and 100 

percent. It should be noted that this study was done under low SWP exports (93 m3/s), which results in 

higher residence time of water in the Clifton Court Forebay, and presumably of fish before they show up 

at the screens. Higher residence times could lead to increased exposure to predators. Survival rates may 
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be higher under higher SWP exports (i.e., > 200 m3/s) when water, and presumably fish, moves much 

faster through Clifton Court Forebay.  

Unfortunately, predator abundance data are sparse for the estuary. For this paper, data on the 

number of key predators salvaged at the fish screens were included in the analysis but it is recognized that 

large mobile predators are less susceptible to entrainment because they are able to freely swim away from 

the fish screens (Gingras and McGee 1997). Thus, predator salvage data is likely a poor indicator of their 

abundance in the area of the SWP and CVP. Nonetheless, salvage of predators and other fishes as 

community response variables were included in the BRT analysis to gleam any potential effects that 

might be important for explaining adult Delta Smelt salvage.  

The revised conceptual model acknowledges the importance of operational drivers in affecting 

some habitat attributes. For example, combined SWP and CVP water exports may have little effect on the 

tidal dispersion of suspended sediment in the estuary (Schoellhamer 2002, McKee et al. 2006) but 

operations of large gates (Delta Cross Channel) on the Sacramento River that are opened to shunt water 

from the Sacramento towards the interior Delta to improve water quality for SWP and CVP exports could 

affect dispersion of turbid water (and Delta Smelt that happen to surf with it) towards the export pumps. 

(Arthur et al. 1996, Monsen et al. 2007, Kimmerer and Nobriga 2008). Also, the farther fish move 

landward to the interior Delta, the higher their entrainment risk given the volume of water pumped per 

day from the Delta by combined SWP and CVP exports (Arthur et al. 1996). This is the basis of any 

conceptual model that assumes there is a mechanistic reason why adult Delta Smelt salvage increases 

when OMR net flows are negative and turbidity is high (e.g., Grimaldo et al. 2009).  

Finally, it is recognized that Delta Smelt distribution prior to the onset of winter storms could 

play a role in their entrainment risk, especially if it influences their movements into the south Delta once 

first flush events occur (Grimaldo et al. 2009). The number of Delta Smelt collected in the CDFW Fall 

Midwater Trawl Survey has decreased to just a handful of fish per year. Thus, this survey provides poor 

estimates of Delta Smelt distribution in the more recent years. Sommer and Mejia (2013) did find a 

positive relationship between X2 and the center of the Delta Smelt distribution in the CDFW FMWT 

survey indicating that this is a reliable metric of their distribution useful for analyses. Note, the authors 

acknowledge that this relationship is not a perfect distribution metric for the entire Delta Smelt population 

because a small number of them are found in the freshwater region of north Delta year-around. (i.e., they 

do not show a relationship to X2 or salinity itself). However, in the conceptual model presented here, it is 

unlikely that these fish move from the north Delta to the south Delta during first flush or any part of their 

life stage; therefore, December outflow was inferred as a surrogate for distribution of Delta Smelt that 

could be vulnerable to entrainment in the low salinity region of the estuary. As previously stated, 
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questions about when and where fish move and how this influences their entrainment risk and daily 

salvage on equivalent time scales are probably best approached using IBM’s 

Methods 

Study approach  

The purpose of this paper was to determine the factors that affect salvage at relevant temporal 

scales informative for resource managers. Initial inspection of the daily salvage data (1993-2015) shows 

that the vast majority of adult Delta Smelt salvage occurs between December 1 and March 31, which is 

considered the annual salvage period for adult Delta Smelt since most only live one year (Fig. 3; Bennett 

2005; Grimaldo et al. 2009). Within years, the salvage data exhibits considerable autocorrelation (5-12 

days), suggesting that entrainment risk is not independent of day to day environmental and operational 

conditions. Grimaldo et al. (2009) examined intra-annual variation in the salvage dynamics by parsing the 

data arbitrarily into monthly intervals, but in retrospect, this approach likely mischaracterized the 

variation explained in the cases when salvage observations only occurred in a few days at the beginning 

or end of the month and were regressed against the monthly average of predictor variables.  

Here, the salvage data was examined at the annual scale and aggregated into a response variable 

aimed at understanding factors that explain salvage during first flush dynamics. This was accomplished 

by only examining the period when daily cumulative salvage reached its 25th and 50th percentile for each 

“water year” starting from December 1st and ending on March 31st. This approach was taken because it is 

believed that environmental and operational conditions occurring during the accelerating part of the 

seasonally accumulating salvage are the conditions that best represent what actually caused the fish to 

occupy nearby channels in the south Delta from where they could be entrained. During the decelerating 

part of seasonally accumulating salvage, it seems likely that salvage is less connected to concurrent 

operations than with whether Delta Smelt had already occupied habitats near the SWP and CVP facilities. 

The 25th and 50th percentiles of cumulative salvage were selected to determine sensitivity of this approach 

for detecting differences in the explanatory variables which can vary dramatically during first flush 

events.  

Adult Delta Smelt salvage data were first explored using Boosted Regression Tree (BRT) models. 

Boosting is an ensemble method considered ideal for examining large data sets with multiple parameters 

because it averages across many moderately fitting models to yield greater model performance than 

attempting to select a single or small group of perfectly fit models (Elith et al. 2008). While traditional 

model selection approaches seek to identify a parsimonious model with few parameters, boosting 

approaches seek to fit many parameters and shrink their contribution, similar to LASSO method (Hastie et 

al. 2001). At first iteration, the BRT is the best fitting regression tree. At second iteration, the regression 

tree that best fits the residuals of the first is added to the BRT. This sequence proceeds until deviance is 
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minimized and adding more trees results in greater deviance. The contribution of each tree to the BRT is 

limited or shrunk by the learning rate, and up to several thousands of trees are commonly fit and added to 

produce the final BRT.  

BRT models can generate more accurate predictions than Generalized Linear Models (GLMs) or 

General Additive Models (GAMs;(Leathwick et al. 2006) but results may lack the mechanistic 

interpretation of models that explicitly model the observation process, which is why negative binomial 

regression models were subsequently applied to the data. Negative binomial and GAM models were 

applied to salvage data at 25th and 50th cumulative salvage percentiles to handle the large number of zeros 

in the salvage observation that cause over-dispersion (Ver Hoef and Boveng 2007) and to handle the 

potential non-linear nature of the relationships between salvage and predictor variables respectively.  

For the negative binomial regression models, a smaller subset of predictor variables identified 

from the BRT analysis were tested as potential factors that affect adult Delta Smelt salvage to provide 

meaningful interpretations useful for potential management implications and actions. For exploring 

annual salvage patterns, both GLM and GAM models were applied to determine best model fits to the 

data. GAM models were applied to the data to determine whether GLM analyses might be missing useful 

or previously unrecognized nonlinear relationships between environmental and operational predictors 

important for identifying thresholds useful for setting management rules (USFWS 2008). In both cases, 

models were applied to each fish facility separately and as a combined count to examine if patterns that 

underlie salvage were influence by different factors since the SWP export capacity (292 m3/s) is almost 

two and half times greater than the CVP export capacity (130 m3/s). The two projects have the potential to 

affect fish entrainment in different ways even though they are regulated as single entity (USFWS 2008). 

Finally, it is worth noting that since the 2008 USFWS Biological Opinion was issued, exports 

have been constrained such that OMR flows are no more negative than -141 m3/s once entrainment risk 

conditions materialize for Delta Smelt (adults and juveniles) between December and June. In addition to 

this OMR flow cap, the USFWS can and has imposed more conservative export cutbacks when the fish 

monitoring data (CDFW surveys and fish salvage itself) and in situ turbidity gauges from the central 

Delta indicate elevated entrainment risk (USFWS 2008; https://www.fws.gov/sfbaydelta/cvp-

swp/smelt_working_group.cfm). Additionally, export restrictions for protected salmonids are 

implemented during this timeframe depending on the rules provided in the National Marine Fisheries 

Service (NMFS) 2009 Biological Opinion. For the analyses presented here, the post 2008 years were not 

separated from the historical data that were largely unaffected by management operations during the 

winter period. However, it should be recognized that management actions since 2008 may have 

proactively reduced entrainment risk for Delta Smelt, which in turn, may affect interpretation of the 

results in the more recent years. 

https://www.fws.gov/sfbaydelta/cvp-swp/smelt_working_group.cfm
https://www.fws.gov/sfbaydelta/cvp-swp/smelt_working_group.cfm
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Data sources 

The SWP and CVP water diversion intakes are located in the southern Sacramento-San Joaquin 

Delta (Fig. 2.). As previously mentioned, in front of the SWP and CVP water intakes are large fish 

facilities intended to reduce fish loss from the system due to entrainment. The state Skinner Fish 

Protective Facility (SFPF) and the federal Tracy Fish Collection Facility (TFCF) direct fish through a 

complex louver system into collecting screens where they are identified, measured, and eventually 

trucked and released back into the environment downstream from the SWP and CVP. A variable fraction 

of Delta Smelt may survive the capture, handling, trucking and release process (Miranda et al. 2010, 

Morinaka 2013). Despite whether they survive the handling and trucking process, any Delta Smelt 

observed at the fish facilities are considered as incidental take under the ESA. The SWP differs from the 

CVP in having a regulating reservoir known as the Clifton Court Forebay that temporarily stores water 

from Old River to improve operations of the SWP pumps.  

Salvage operations have been operating almost daily for the last few decades at the TFCF (since 

1958) and SPFF (since 1968)(Brown et al. 1996). Arguably, they are two of the largest fish sampling 

systems in the world. Up until the early 1990’s, salvage counts and identification were focused on 

salmonids and striped bass. However, after Delta Smelt were listed in 1993, focus on proper identification 

and detections resulted in a change in count frequency of twice per day (1978 to 1992) to every two hours 

thereafter (Morinaka 2013). Daily salvage for each species per day for each facility are calculated by the 

following: 

𝑆𝑑 =∑𝑠𝑖

𝑛

𝑖=0

= 𝐶𝑖 ∗ (
𝑚𝑝𝑖

𝑡𝑖
) 

 

where Sd is the total daily salvage, si is the salvage per sample, Ci is the number of fishes in a sample 

defined by the minutes of water pumped (mpi) per the counting time (ti). Typically, there are six sample 

periods per day and twenty individuals per species greater than 20 mm fork length (FL) are measured. 

Salvage data for Delta Smelt and other species used in the analysis were obtained from the California 

Department of Fish Wildlife (CDFW) ftp site (ftp://ftp.dfg.ca.gov/Delta%20Smelt/).  Delta Smelt adult 

abundance estimates from the CDFW’s FMWT monitoring survey were obtained from the same ftp site. 

 Physical and biological variables used in statistical models of Delta Smelt salvage included those 

used by Grimaldo et al. (2009) and new ones identified from the revised conceptual model (Fig. 1). Most 

of the physical and hydrodynamic data were obtained from the California Department of Water Resources 

(CDWR) long-term monitoring website portals (www.water.ca.gov/dayflow/; http://cdec.water.ca.gov) 

flow variables include those that are measured directly with gauges and those that are modeled. Combined 

net OMR flows were obtained from United States Geological Survey (USGS) acoustical velocity meters 

ftp://ftp.dfg.ca.gov/Delta Smelt/)
http://www.water.ca.gov/dayflow/
http://cdec.water.ca.gov)/
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located near Bacon Island (Fig. 1; Arthur et al. 1996; http://waterdata.usgs.gov/ca/nwis/). OMR flows 

integrates a complex set of factors, including SWP and CVP exports, flows from the large and small 

tributaries into the interior Delta, daily and neap– spring tidal variation, local agricultural diversions, and 

wind (Monsen et al. 2007). Suspended-sediment concentration (mg/1) data were obtained from USGS 

(Personal Communication Tara Morgan-King).  

Statistical analyses 

The first step with the BRT analysis was to select a subset of predictor variables from over 50 

candidate variables identified from the revised conceptual model. As bookends, the BRT analysis was 

performed on the 25th percentile and the annual data set. Available variables describing Delta-wide 

hydrodynamics, river flows, SWP and CVP exports, and metrics broadly describing Delta Smelt habitat 

attributes were considered (Table 1). Data on salvage of other species were grouped as variables 

describing the biological community which may have direct or indirect effects on Delta Smelt abundance 

and distribution. Overall, data were highly correlated, particularly among physical variables and among 

community variables (Table 2). In order to avoid misleading results associated with multicollinearity 

among variables, Principle Component Analysis (PCA) was used to reduce the dimensionality of the 

physical dataset and the community dataset to two smaller sets of uncorrelated (orthogonal) data. Only the 

set of principle components (PCs) explaining a large fraction of the variation in the data were desired; 

thus, only PCs with eigenvalues greater than one were retained for boosted regression tree analysis. 

Principle component rotations were inspected to determine which variables loaded on each PC and 

interpret the meaning of each PC. Prior to PCA, all physical and community variables were natural log 

transformed for normality. Correlation between physical and community PCs was quantified using 

Pearson’s correlation coefficient. If physical and community variables were highly correlated, one 

variable was selected for removal from the predictor set. Physical PCs were preferentially retained over 

community PCs, because relationships between Delta Smelt salvage and physical variables could be 

interpreted mechanistically, while relationships with community variables were interpreted as merely 

correlational. PCA requires a complete dataset, so two physical variables with missing data were not 

included in the PCA but were included in the final set of physical variables, Clifton Court Forebay 

turbidity (Nephelometric Turbidity Unit, NTU) and water temperature (C). These two variables were 

explored for correlations with physical PCs to assure that their inclusion in data used for boosted 

regression tree analysis did not introduce collinearity. If a variable was highly correlated with a PC, that 

variable was not retained for boosted regression tree analysis. High correlation with a PC suggested that 

the information contained within that variable’s distribution was captured by a PC. 

The boosted regression tree model was fit using R package dismo and the gbm.step function (R 

Development Core Team 2008). The gbm.step function used ten-fold cross validation to determine the 

http://waterdata.usgs.gov/ca/nwis/
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optimal number of regression trees to fit. Trees were added until a deviance minima was reached. 

Learning rate was set to the lowest rate that reached a deviance minima with less than 3000 trees (0.01 > 

lr > 0.1), and up to three-way interactions were modeled (tree complexity = 3). Half of the data was used 

as a training set while half was used as a test set. 

Negative binomial models and GAM’s were subsequently applied on a smaller subset of variables 

identified from the BRT analysis for the cumulative salvage percentiles (25th and 50th). Negative binomial 

models were done using the pscl package (Zeileis et al. 2008, Jackman et al. 2015) in the R statistical 

computing environment. GAMs were also applied to the cumulative salvage percentile data using a 

Poisson distribution with cubic regression spline smoothing functions (mgcv package in R). Only years 

where positive daily salvage observations (> 0 fish collected) were 5 or more days for the water year were 

included in the analyses. The annual data were analyzed use GLM and GAM models. Model comparisons 

were evaluated Akaike Information Criteria (AIC) values were calculated, AIC = 2*k – 

2*log(Likelihood), where k = the number of parameters. AIC simultaneously quantifies goodness of fit, 

as defined by the likelihood of the data, and model complexity (as measured by k), and models with the 

smallest AIC values are considered preferable.  

Results 

Boosted Regression Trees  

Principle component analysis reduced 11 highly correlated physical variables to 3 orthogonal PCs 

explaining 73% of all variation in physical data and 20 community variables to 7 PCs explaining 60% of 

all variation in community data (Tables 3 and 4). To aid in interpretation of Physical PCs, each Physical 

PC was plotted against one of the important variables loading on that PC (Fig. 3). Physical PC 2 and 

community PC 1 were highly correlated (Table 5), so community PC 1 was not retained for further analysis. 

Including previous year’s FMWT, day in the spawning season, water temperature, and PCs, 12 variables 

were explored for associations with Delta Smelt salvage using BRT analysis. Clifton Court Forebay 

turbidity was not included in the final set of variables, because it was highly correlated with the first physical 

PC that loaded on outflow.  

BRT analysis suggested that regardless of dataset, the most influential variable in the magnitude of 

Delta Smelt salvage was the second physical PC that loaded on daily export rate and OMR (Export PC). 

Higher salvage was associated with greater values of Export PC (Fig. 4). All three physical PCs had at least 

5% influence in the fitted model (Table 6). Lower values of physical PC 3 that loaded on GCD and 

precipitation were associated with greater salvage. The most influential community variables were prior 

year’s FMWT and the second community PC loading on Bullhead and Pike Minnow. Low salvage of Delta 

Smelt was associated with higher prior year’s FMWT and higher values of the community PC 2. While it 
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was not retained for the final analysis, preliminary analysis suggested that greater salvage of Delta Smelt 

was associated with higher values of the first community PC that loaded on anadromous fish and catfish.  

The rank of influence varied slightly between models fit to the full dataset versus the 25th percentile 

dataset, but the list of influential physical and community variables was identical. In both models, 

interactive effects were apparent among the physical variables and prior year’s FMWT (Fig. 3). Certain 

combinations of physical variables were more likely to be associated with salvage. Across temporal scales, 

the most consistent combinations with a high probability of salvage were a combination of water 

temperature between 8 and 10◦C and high Export PC and a combination of prior year’s FMWT greater than 

100 and high Export PC.  

All years were included in the negative binomial and GAM 25th and 50th percentile analyses 

except for water years (2007, 2009, 2011, 2014) when there were less than 5 daily salvage observations 

during the study period (121 days). During the eight highest salvage years, the 50th cumulative percentile 

was reached in as few as 40 days since December 1st (2001) to 57 days (1993). The fewest days it took for 

the onset of salvage (i.e., first daily salvage observation of the year) to the 50th percentile for any given 

water years was 14 days (2001). The fewest number of days between 25th and 50th percentiles within any 

given water year was 3 days.  

Based on the BRT analysis, variables selected for the negative binomial analyses included 

combined SWP and CVP exports or OMR flow, December X2, previous FMWT abundance, suspended 

sediment for San Joaquin river, Sacramento River flow, water temperature, and Clifton Court Forebay 

turbidity. Sacramento suspended sediment was considered but removed to do collinearity with 

Sacramento River flow. Although Clifton Court Forebay turbidity was not included in the BRT because 

of its collinearity with PC1, it was included in the cumulative salvage models because it is important 

compliance metric for the Delta Smelt entrainment management (USFWS 2008).  

Overall, the GAM models explained a much higher percentage of the variance in the adult Delta 

Smelt salvage data than the negative binomial models (Tables 7 and 8). Nonetheless, both model 

approaches revealed an importance of SWP and CVP exports, Clifton Court Forebay turbidity, suspended 

sediment, water temperature, previous FMWT abundance, and prior fish distribution (indexed as 

December outflow) as significant predictor variables of Delta Smelt salvage (Figure 6). Models with SWP 

and CVP exports had lower AIC values than OMR flow for cumulative 25th and 50th percentile. Models 

with OMR are not further presented in this paper.  

Overall, both GLM and GAM models show consistency with annual variance explained (Table 

9). The GLM indicated an importance of SWP and CVP exports, Sacramento River flow, and previous 

FMWT abundance. The GAM model found that SWP and CVP exports and Vernalis suspended sediment 
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were the most important variables that explained annual salvage patterns (Table 9). Delta Salvage 

response increased with higher exports and Vernalis suspended sediment (Figure 7).  

 

Discussion 

 This study demonstrates that adult Delta Smelt salvage patterns are largely explained by 

hydrodynamics, some measure of water clarity (turbidity or suspended sediment), water temperature, and 

their adult abundance. These factors had explanatory significance for the onset of salvage and for overall 

annual salvage, suggesting that events that occur during the first flush period are important for influencing 

salvage at the annual level. Mechanistically, the results from this study offer little insights into what 

factors actually prompt Delta Smelt to disperse or migrate into the south Delta in the first place.  These 

behaviors are likely related to their changing physiology as they begin staging and spawning (Sommer 

and Mejia 2013) and other environmental cues that alter their behavior once river inflow increases 

(Bennett 2005; Bennett and Burau 2015). Researchers in other estuaries have found that spawning 

behavior of other osmerids is often linked to changing lunar phases (Hirose and Kawaguchi 1998), 

semidiurnal tides (Middaugh et al. 1987) and water temperature (Nakashima and Wheeler 2002) 

Although approached slightly differently in this study, combined SWP and CVP exports were 

found to be important predictors of adult Delta Smelt salvage in all the models explored. This result itself 

is not surprising given previous research on topic (Kimmerer 2008; Grimaldo et al. 2009) but it is worth 

noting that SWP and CVP exports slightly improved model performance from OMR flow, which 

integrates exports and San Joaquin River flow. The actual influence of SWP and CVP exports on Delta 

Smelt behavior is unknown. Recent research from Bennett and Burau (2015) suggests that Delta Smelt are 

not behaving passively during the onset of winter storms, even if they want to simply hold their 

longitudinal position. Except for wet years when river inflows are net seaward in south Delta channels 

(Arthur et al. 1996; Monsen et al. 2007), the relationship between higher exports and higher observed 

salvage is interpreted to represent two key processes that underlying entrainment rates and observed 

salvage. First, under higher exports, residence time of water in the south Delta channels is low and net 

flow is towards the SWP and CVP (Monsen et al. 2007; Kimmerer and Nobriga 2008). Therefore, for the 

Delta Smelt that do move into the south Delta during first flush, it is understandable that their entrainment 

would increase under higher exports and it would occur in rapid fashion (Kimmerer 2008). Second, it is 

likely that when residence time in the south Delta channels and Clifton Court Forebay is low, predator 

mortality is probably also lower (Cavallo et al. 2013), which could result in increased salvage 

observations at the fish facilities. 

The importance of turbidity as a predictor of Delta Smelt salvage in most of the models examined 

is important because it has been overlooked in previous approaches (Kimmerer 2008) or not found 
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significant in some previous models of Delta Smelt salvage (Grimaldo et al. 2009). As a habitat attribute, 

the relationship between turbidity and adult salvage confirms relationships that have been identified for 

Delta Smelt in a number of monitoring surveys for different life stages. Delta Smelt catches are higher 

when the water is more turbid, which is thought to reduce their predation risk (Feyrer et al. 2007; Nobriga 

et al. 2008; Sommer and Mejia 2013) and increase their catchability (Latour 2015).  

It should be recognized that the Clifton Court Forebay turbidity monitoring station is the only 

gauge that has time series data going back to the early 1990’s. Emerging hydrodynamic-turbidity 

modeling indicates that turbidity at this Clifton Court Forebay gauge is mostly influenced by wind events 

and turbidity/sediment that moves from the San Joaquin River via the eastern channel of Old River 

channel (Personal Communication, Michael MacWilliams, Anchor QEA) at shorter time intervals (i.e., 

hours and days). The eastern channel of Old River towards the San Joaquin River confluence is not region 

where Delta Smelt reside in any appreciable numbers or the direction they would enter the SWP and 

CVP. Therefore, the importance of Clifton Court Turbidity as a significant variable in the models 

presented here has limited interpretation as a variable likely to influence Delta Smelt entrainment risk at 

broader regional level. The USFWS recognizes the importance of Delta-wide turbidity and maintains a 

network of new in-river gauging stations installed with the purpose of helping guide real-time 

management decisions for Delta Smelt.   

The inclusion of suspended sediment from the San Joaquin river sediment as a surrogate for water 

clarity is probably more informative for understanding the effect of landscape drivers on both Delta-wide 

turbidity and Delta Smelt salvage. Both the 25th and 50th GAM models include the two sediment sources 

as predictors of adult Delta Smelt salvage, showing that Delta Smelt linearly decreases with increasing 

San Joaquin River sediment. Because suspended sediment concentration is a reasonable proxy for 

turbidity and San Joaquin River flow, this relationship is consistent with the interpretation that as the 

Delta receives higher suspended sediment concentrations, Delta Smelt are likely to expand their 

distribution upstream except at the very high ends of freshwater inflow remain they remain downstream 

of the SWP and CVP.   

An outstanding question is whether Delta Smelt will only move into the south Delta during first 

flush conditions or whether they would continually move in during subsequent storms. As stated 

previously, this question is probably best approached using an IBM coupled with a 2D or 3D model using 

first flush behaviors identified by Bennett and Burau (2015). Of the Delta Smelt that do migrate upstream 

to spawn, there is some evidence that Delta Smelt only make one large push to upstream habitats after the 

first flush. This can be gleamed from the salvage data itself which is highly unimodal in nature (see 

Figure 6 in Grimaldo et al. 2009) and from the CDFW SKT trawl data which shows very little movement 

of fish between regions from month to month (http://www.dfg.ca.gov/delta/projects.asp?ProjectID=SKT). 

http://www.dfg.ca.gov/delta/projects.asp?ProjectID=SKT)
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It is also important to note that once spawning commences in late February and early March, natural 

mortality must rapidly increase due to post-spawning senescence. This may explain why salvage of adult 

Delta Smelt is lower in March compared to December and January in most years and nearly zero by late 

April and May because, as we show here, abundance is a predictor of salvage. The model results 

presented here do indicate that entrainment risk increases when the center of the population, as indexed 

by December X2, is landward. The mechanism underlying this relationship suggests that even small 

southward movements towards the SWP and CVP when the water in the south Delta is turbid could result 

in increased risk. In drier years, when river inflows are low and turbidity is low, entrainment risk is much 

lower, regardless of where the fish are located (e.g., see Figure 6). 

The importance of biological interactions is difficult to extract from the data sources used in the 

analyses presented here. For example, the importance of stock size (previous FMWT) improving variance 

explained in most of the models presented here suggest that when abundance is higher, there is a greater 

chance of detecting them in the SWP and CVP if other habitat conditions are suitable. The only predator-

prey interaction that could be gleamed from the BRT came from the positive response between brown 

bullhead and pike minnow PC variable and increased Delta Smelt salvage. It is unlikely that these fish are 

significant predators of Delta Smelt given their abundance is really low in the south Delta and at the SWP 

altogether. This is not to dismiss the importance of predatory effects but the lack of spatial and temporal 

predator data in the estuary prohibits confident assessment at this time.   

Management Implications 

 Managing SWP and CVP during first flush periods creates conflict between resources managers 

who are required to reduce exports when Delta Smelt are vulnerable to entrainment versus operators who 

wish to improve the State’s water storage and delivery by ramping up exports when freshwater inflows 

elevate in the Delta (Brown et al. 2009). Information generated from this study suggests that adult Delta 

Smelt salvage risk could be minimized through SWP and CVP export reductions during the onset of first 

flush conditions. Careful monitoring of Delta-wide turbidity, river inflow, suspended sediment inputs, 

fish distribution and water temperature could help determine when first flush conditions materialize. The 

extent and duration of potential management actions could vary depending on the strength of these 

conditions and the water supply tradeoffs. Note, this framework for management action alternative is 

currently built into the USFWS Biological Opinion for protecting Delta Smelt. The ability to test the 

efficacy of these rules under an adaptive management framework could provide some clarity on the real-

time factors that could be manipulated by managers to optimize these rules in manner that enhances fish 

protection and water supply reliability.  

The ability to develop coupled biological-hydrodynamic IBMs could also be helpful for testing 

hypotheses about finer scale movements of Delta Smelt under different exports and environmental 
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conditions. This approach would be considered particularly desirable in light of recent CDFW surveys 

where only a handful of Delta Smelt caught annually. As the Delta Smelt becomes rarer, and it becomes 

increasingly difficult to track their movements from the surveys, IBM approaches applied to the historical 

data when Delta Smelt were more abundant could be useful for generating predictions about their real-

time entrainment risk.  

Emerging eDNA techniques for testing the presence or absence of Delta Smelt during first flush 

periods could also prove as a fruitful management tool (Schreier et al. 2016), if detection rates could be 

reasonably determined relative to their abundance and net southward flows to the water export facilities. 

New tagging techniques for cultured Delta Smelt (Wilder et al. 2016)could also be applied by releasing 

tagged fish during first flush periods to determine the rate and direction fish move in the south Delta. 

These studies could also help determine the effects of predation within the Clifton Court Forebay under 

high and low exports (Castillo et al. 2012) and in the channels that lead to the SWP and CVP during first 

flush periods akin to research that has been done for salmonids in the estuary (Cavallo et al. 2015).  

Finally, it is worth noting that the ultimate objective for managing Delta Smelt entrainment 

should not focus on observed salvage. Rather, the management objective should be to target entrainment 

losses, in a traditional fisheries sense, to sustainable levels that do not compromise population growth 

rates (Maunder and Deriso 2011; Rose et al. 2013). The results presented in this study can help scientists 

and resource managers identify circumstances when those large entrainment losses are likely to occur, 

which can ultimately be used to develop risk assessment models, and real-studies (e.g., field and IBM’s) 

of fish and their habitat attributes for improved Delta Smelt management. The question about whether the 

Delta Smelt population can rebound from record-low abundances, even with improved entrainment 

management during the winter, remains outstanding given the importance of other factors at play (i.e., 

poor food supply, growth, water temperatures; see Maunder and Deriso 2011; Rose et al 2013, ) or other 

stage-specific dynamics that also appear limiting to the population (Bennett 2005, Maunder and Deriso 

2011, Rose et al. 2013, Interagency Ecological Program 2015).  
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Table 1. Predictor variables used to examine Delta Smelt salvage patterns.  

 

Variable Var Name Data Source Unit 

1. Old and Middle River flow OMR Dayflow m3/s 

2. Total SWP and CVP Exports  EXPORT Dayflow m3/s 

3. Previos Fall Midwater Trawl 

Index abundance index 

FMWT Dayflow m3/s 

4. Clifton Court Forebay turbidity CCFNTU CDEC Station CLC NTU 

5.Freeport suspended sediment 

concentration 

FSSC USGS Station 

11447650 

mg/l 

6. Vernalis suspended sediment 

concentration 

Vernalis 

SSC 

USGS Station 

11303500 

mg/l 

7. Sacramento River Flow  SAC Dayflow m3/s 

8. Water Temperature at Mallard 

Island 

Temp CDEC Station MAL ⁰C 

9. Daily Delta precipitation at 

Stockton Fire Station No. 4 

PREC Dayflow cm 

10. Miscellaneous Water 

Diversions/Transfers 

MISDV Dayflow m3/s 

11. San Joaquin River flow 

estimate past Jersey Point 

WEST Dayflow m3/s 

12. Sacramento River flow 

estimate past Rio Vista 

RIO Dayflow m3/s 

13. Net Delta outflow estimates at 

Chipps Island 

OUT Dayflow m3/s 

14. Deltawide gross channel 

depletion estimate 

GCD Dayflow m3/s 
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15. Estimated distance from 

Golden Gate to 2 ppt Salinity 

X2 Dayflow km 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Correlation matrix of physical variables used in statistical models to explore Detla Smelt salvage 
patterns 

 VSSC PRJEXP PREC MISDV WEST RIO OUT OMR X2 GCD 

FSSC 0.45 0.16 0.39 0.07 0.31 0.39 0.38 0.07 -0.26 -0.08 

VSSC  0.23 0.50 0.02 0.33 0.45 0.44 0.00 -0.26 -0.15 

PRJEXP   0.07 -0.02 -0.32 

-

0.02 -0.09 -0.66 0.00 0.04 

PREC    0.01 0.44 0.42 0.44 0.08 -0.10 0.02 

MISDV     0.09 0.20 0.18 0.19 -0.06 0.01 

WEST      0.81 0.88 0.81 -0.69 -0.18 

RIO       0.99 0.50 -0.63 -0.17 

OUT        0.59 -0.67 -0.18 

OMR         -0.51 -0.18 

X2          0.42 
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Table 3. Principle component rotations used to interpret physical principle components. Only principle 

components with eigenvalues greater than one are shown. The tails of the distribution (5% highest and 5% 

lowest) of each PC’s rotations are indicated in bright red, with progressively bluer shades indicating lower 

contributions to the principle component. 

 

 PC1 PC2 PC3 

interpretation Outflow Exports GCD.Precipitation 

λ 4.89 1.98 1.16 

cumulative prop(var) 0.44 0.63 0.73 

    
Freeport.SSC 0.32 0.25 0.04 

Vernalis.SSC 0.33 0.28 0.07 

Exports -0.01 0.64 -0.22 

PREC 0.24 0.19 0.57 

MISDV 0.00 0.06 0.21 

WEST 0.37 -0.26 0.20 

RIO 0.42 0.12 -0.06 

OUT 0.44 0.04 0.00 

OMR 0.23 -0.56 0.07 

X2 -0.37 0.10 0.36 

GCD -0.16 0.09 0.62 
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Table 4. Principle component rotations used to interpret biological community principle components. Only 

principle components with eigenvalues greater than one are shown. The tails of the distribution (5% highest 

and 5% lowest) of each PC’s rotations are indicated in bright red, with progressively bluer shades indicating 

lower contributions to the principle component. 

 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

interpretation Anadrom

ous 

.Catfish 

CVPbullC

HN. 
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Table 5. Correlation matrices of Principle Components. 
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Table 6. Relative influence of all predictor variables in models fit to the full dataset or only “first flush” 

period data (25th percentile). Only variables with at least 5% of the influence were ranked; other variables 

were considered insignificant. 

 

Variable 

Relative influence 

(Rank) 

full 

dataset 

25th 

percentile 

Phy.PC.Exports 0.25 (1) 0.24 (2) 

PFMWT 0.20 (2) 0.19 (1) 

Bio.PC.Bull.Pminn 0.11 (3) 0.19 (3) 

Julian.day 0.10 (4) 0.05 (4) 

Phy.PC.Outflow 0.07 (5) 0.05 (8) 

Water.Temp 0.05 (6) 0.05 (5) 

Phy.PC.GCD.Precipitation 0.05 (7) 0.06 (6) 

Bio.PC.SWPSMPcrappie - - 

Bio.PC.SWPbass - - 

Bio.PC.Blackbass - - 

Bio.PC.CVPpminnSMB.SWPcrappie - - 

Bio.PC.CVPcrappieLMB - - 
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Table 7. Negative binomial (A) and GAM (B) output for statistical models exploring factors that explain 

cumulative 25th percentile Delta Smelt salvage patterns. Values in italics indicate best models based on AIC 

scores. Significant parameters (P< 0.05) within each model are indicated in bold. 

 

 

 

 

 

 

 

 

A.       

Model Parameters 

Deviance 

Explained AIC ΔAIC 

Exports 12.9 4363 404 

Exports + log(PFMWT) 15.9 4343 384 

Exports + log(PFMWT) + SAC 22.2 4296 337 

Exports + log(PFMWT) + SAC + DecmeberX2  23.0 4045 86 

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU 23.9 4041 82 

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU + WaterTemp 24.7 3959   

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU + WaterTemp + 

VernalisSSC 25.0 3961 2 

        

        

B.        

Model Parameters 

Deviance 

Explained AIC ΔAIC 

s(Exports)  23.5 54833 34027 

s(Exports) + log(PFMWT)  28.8 51128 30322 

s(Exports) + log(PFMWT) + s(SAC) 49.4 39820 19014 

s(Exports) + log(PFMWT) + s(SAC)+ s(DecmeberX2)  59.9 30098 9292 

s(Exports) + log(PFMWT) + s(SAC) + s(DecmeberX2) + s(CCFNTU)  60.7 27955 7149 

s(Exports) + log(PFMWT) + s(SAC) + s(DecmeberX2) + s(CCFNTU) + s(WaterTemp)  69.9 21388 582 

s(Exports) + log(PFMWT) + s(SAC) + s(DecmeberX2) + s(CCFNTU) + 

s(WaterTemp) + s(VernalisSSC) 70.7 20806   



29 | P a g e  
 

Table 8. Negative binomial (A) and GAM (B) output for statistical models exploring factors that explain 

cumulative 50th percentile Delta Smelt salvage patterns. Values in italics indicate best models based on AIC 

scores. Significant parameters (P< 0.05) within each model are indicated in bold. 

 

A.       

Model Parameters 

Deviance 

Explained AIC ΔAIC 

Exports 26.0 6662 643 

Exports + log(PFMWT) 27.0 6535 516 

Exports + log(PFMWT) + SAC 27.0 6537 518 

Exports + log(PFMWT) + SAC + DecmeberX2  31.3 6484 465 

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU 32.9 6186 167 

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU + WaterTemp 33.5 6019   

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU + WaterTemp + 

VernalisSSC 33.5 6020 1 

        

        

B.       

Model Parameters 

Deviance 

Explained AIC ΔAIC 

s(Exports)  30.4 

10762

6 64706 

s(Exports) + log(PFMWT)  42.0 90114 47194 

s(Exports) + log(PFMWT) + s(SAC) 48.8 79803 36883 

s(Exports) + log(PFMWT) + s(SAC)+ s(DecmeberX2)  63.2 58019 15099 

s(Exports) + log(PFMWT) + s(SAC) + s(DecmeberX2) + s(CCFNTU)  65.6 53557 10637 

s(Exports) + log(PFMWT) + s(SAC) + s(DecmeberX2) + s(CCFNTU) + 

s(WaterTemp)  71.2 44458 1538 

s(Exports) + log(PFMWT) + s(SAC) + s(DecmeberX2) + s(CCFNTU) + 

s(WaterTemp) + s(VernalisSSC) 72.1 42920   
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Table 9. GLM (A) and GAM (B) output for statistical models exploring factors that explain annual Delta 

Smelt salvage patterns. Values in italics indicate best models based on AIC scores. Significant parameters 

(P< 0.05) within each model are indicated in bold. 

 

A. 

Model Parameters 

Adjusted 

r2 AIC ΔAIC 

Exports 0.32 62.88 18.13 

Exports + log(PFMWT) 0.65 48.57 3.82 

Exports + log(PFMWT) + SAC 0.71 44.75   

Exports + log(PFMWT) + SAC + DecmeberX2  0.70 46.41 1.66 

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU 0.69 48.22 3.47 

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU + WaterTemp 0.70 47.66 2.91 

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU + WaterTemp + 

VernalisSSC 0.72 46.85 2.1 

 

 

B.  

Model Parameters 

Deviance 

explained AIC ΔAIC 

Exports 42.75 61.443 13.76 

Exports + log(PFMWT) 50.85 59.403 11.72 

Exports + log(PFMWT) + SAC 71.17 53.616 5.933 

Exports + log(PFMWT) + SAC + DecmeberX2  73.01 53.077 5.394 

Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU 74.07 50.763 3.08 
Exports + log(PFMWT) + SAC + DecmeberX2 + CCFNTU + WaterTemp + 

VernalisSSC 83.31 47.683   
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Figure 1. Revised conceptual model of factors and drivers influencing Delta Smelt salvage at the 

SWP and CVP.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Landscape 

Drivers 
Weather  

Precipitation  
(winter storms) 

Sediment 

resuspension 

Turbidity 

Habitat/Physical  
attributes 

Landscape 

Drivers 
Sediment supply 

Tides 

Dispersal/Migration 

cues 

Distribution prior to 

first flush 

Biological response 

Biological 

Drivers 
Stock Size 

Habitat 

Operational 

Drivers 
Exports 

Cross Channel 

 

Reverse OMR 

flows 

Distribution after 

first flush 

Entrainment Biological 

Drivers 
Fish length 

Pre-screen and 

fish facility 

predator mortality  

Operational Drivers 
Louver efficiency 

Observed salvage 

Staging behavior 

River inflows 

Biological 

Drivers 
Natural mortality 

Growth 
 



33 | P a g e  
 

Figure 2. Map of the Upper San Francisco Estuary and Sacramento-San Joaquin Delta. Needs to 

be updated in revision. 
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Figure 3. Relationship between the four physical PCs retained for BRT analysis and the primary 

physical variable loading on each PC. All variables were log transformed for normality. 
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Figure 4. Boosted regression tree estimates of the magnitude of salvage at annual (A) and 25th percentile 

(B) annual response levels . Only the most influential variables are shown. Estimates represent expected 

salvage across the range of observed variable values, while holding all other variables at their means. Rug 

plots indicate observed variable values
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Figure 5. The three most important two-way interactions between physical variables. 
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Figure 6. Plots showing the relationships between Delta Smelt salvage (cumulative 50th 

percentile, see text for details) and continuous predictor variables.  Plots are fitted smooths and 

95% confidence intervals for partial responses from generalized additive models. The y axis 

units are centered on zero and the number in the label is the estimated degrees of freedom of the 

smooth. Variables are explained in Table 1.  
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Figure 7. Plots showing the relationships between Delta Smelt annual salvage patterns and continuous 

predictor variables.  Plots are fitted smooths and 95% confidence intervals for partial responses from 

generalized additive models. The y axis units are centered on zero and the number in the label is the 

estimated degrees of freedom of the smooth. Variables are explained in Table 1. 
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Abstract 

Managing endangered species presents many challenges when it becomes difficult to detect their 

presence in the wild. In the San Francisco Estuary, the state- and federally-listed Delta Smelt (Hypomesus 

transpacificus) has declined to record low numbers, which has elevated management concern over their 

entrainment at State Water Project (SWP) and Central Valley Project (CVP) water diversions. The 

objective of this paper was to: 1) revisit previous work on factors that affect the number of adult Delta 

Smelt collected (also known as “salvage) at the SWP and CVP fish screens with updated conceptual 

models and new statistical approaches; and 2) to determine factors that affect salvage risk at time scales 

useful for resource managers. Boosted Regression Tree (BRT) models were applied to the salvage data to 

determine if the factors that best explained salvage during the onset of winter storms (“first flush”) 

differed from those that explained salvage over the season when adult Delta Smelt are vulnerable to 

salvage. Salvage from the SWP and CVP were examined separately because it was hypothesized that 

different factors could influence fish distribution and the collection efficiency of each facility. During first 

flush periods, salvage at each facility was best explained by water exports (sampling effort), precipitation 

(recently linked to movement and vulnerability to offshore trawling gear), abundance and Yolo Bypass 

flow. During the entire adult salvage season, SWP salvage was best explained by SWP exports, Yolo 

Bypass flow, and  abundance whereas CVP salvage was best explained by abundance, Old and Middle 

River flows, and turbidity. This study suggests that adult Delta Smelt salvage is influenced by 

hydrodynamics, water quality, and population abundance The model approaches applied here offer an 

improvement from earlier approaches because they integrate and account for complex interactions 

between water exports and factors that operate independent of water exports. Forecast models that 

integrate real-time explanatory variables with fish distribution data may improve management strategies 

for minimizing salvage risk while maintaining operational flexibility.  
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Introduction 

Over the last couple of decades, fisheries management has redirected its focus from individual 

species to broader ecosystem objectives to address inherent complexities of aquatic environments (Link 

2002, Hall and Mainprize 2004, Pikitch et al. 2004). For rare species, management objectives that focus 

on restoring ecosystem functions are considered desirable because they emphasize mechanisms that 

influence species survival and growth rather than counts of individuals, which may be difficult to detect 

as population numbers decline. For species listed under the federal Endangered Species Act (ESA), the 

law allows for recovery actions to be carried out through robust adaptive management plans that include 

consideration of habitat quality and quantity, reduced exposure to predators and contaminants, and 

improved access to rearing habitats.  However, the ESA also requires that incidental take1 of endangered 

species be reasonably minimized or avoided where possible. Conservation plans that can confidently 

assess and predict when listed fish species are likely to be encountered may help speed species recovery 

(Pikitch et al. 2004).  

In the upper San Francisco Estuary, (CA), national attention has been drawn to Delta Smelt 

(Hypomesus transpacificus), a small endangered fish whose numbers have declined to record low levels 

(Sommer et al. 2007; Moyle et. al. 2016). Found nowhere else in the world, Delta Smelt seasonally reside 

within the hydrodynamic influence of two large water diversions that provide municipal water for over 25 

million Californians (State Water Project, SWP) and support a multibillion dollar agricultural industry 

(Central Valley Project, CVP). When Delta Smelt are located near the SWP and CVP pumps, the United 

Fish and Wildlife Service (USFWS) imposes flow limits that can result in water diversion reductions to 

minimize entrainment losses (USFWS 2008). Entrainment losses have accounted for significant 

population losses in some years (Kimmerer 2008, Kimmerer 2011). Statistical evaluations have indicated 

that entrainment losses, along with declining food supply and loss of habitat, have had adverse effects on 

Delta Smelt’s population growth rate (Mac Nally et al. 2010, Kimmerer 2011, Maunder and Deriso 2011, 

Rose et al. 2013). An improved understanding of the mechanisms and factors that affect Delta Smelt 

entrainment is of high importance to natural resource managers, scientists and stakeholders who seek to 

both protect rare species and provide a reliable water supply to the people and agricultural communities of 

California.  

 Delta Smelt is an annual species whose adult relative abundance has historically been estimated 

by a multi-month trawl survey during the fall (Thomson et al. 2010). This survey has usually concluded 

shortly before adult Delta Smelt begin to become lost to entrainment (Kimmerer 2008, Grimaldo et al. 

 
1 Federal ESA incidental take is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect 

any threatened or endangered species (USFWS 1973) 
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2009). However, major declines in the species have made it difficult to determine the abundance and 

distribution of this fish from this long-term survey (Latour 2015). Therefore, an assessment of water 

diversion impacts to the Delta Smelt population are difficult to estimate, particularly at time scales 

relevant to the co-management of the species’ protection and water export. Thus, managers and scientists 

must also consider conditions that are likely to produce higher entrainment risk based on historical 

relationships between salvage and physical-biological factors (Brown et al. 2009, Grimaldo et al. 2009).  

In this paper, the factors known to affect adult Delta Smelt salvage at the SWP and CVP 

(Kimmerer 2008, Grimaldo et al. 2009, Miller 2011, Miller et al. 2012, Interagency Ecological Program 

2015) are revisited with new information to test the ability of several modern statistical approaches to 

predict the conditions that most influence Delta Smelt entrainment risk. Note, the goal here is not to 

determine proportional entrainment losses (i.e., fish entrained as a fraction of the population) or the 

effects of entrainment losses to the population - both of which have been examined previously (Kimmerer 

2008, Kimmerer 2011, Maunder and Deriso 2011, Miller 2011, Rose et al. 2013). The goal here is to 

determine how well entrainment risk, as indexed by the number fish observed at the louver screens 

(known as “salvage”), could be quantified at time scales relevant to management. Our specific study 

questions were the following: 1) What subset of factors best predict salvage the SWP and CVP? 2) Does 

analysis at a seasonal time step similar to Grimaldo et al. 2009 produce qualitatively different results than 

an analysis that focuses on first flush? 3) Does accounting for autocorrelation in the salvage data improve 

model fit? 4) How well can SWP and CVP salvage be forecasted? Our hope was that addressing these 

questions would help resource managers improve real-time management actions to limit the entrainment 

of Delta Smelt, while also providing maximum operational flexibility for the SWP and CVP water 

projects (hereafter referred as the “Projects”).  

 

Methods 

Study approach  

Because one of the goals of this paper was to develop a model or set of models useful for 

understanding entrainment risk in real-time, only independent variables that are measured at daily or sub-

daily increments and are readily accessible for download in real-time were used in the analysis (Table 1). 

Physical and biological variables used in statistical models of Delta Smelt salvage included those used by 

Grimaldo et al. (2009) and new ones identified in more recent conceptual models (Miller 2011; MAST 

2015). Overall, the analysis was designed to test hypotheses about how Delta Smelt salvage is expected to 

responde to hydrodynamics, hydrology, distribution, adult stock size, and water quality. Food abundance 

and predator abundance have been identified has potentially important variables that influence adult Delta 
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Smelt salvage (Miller 2011) but data on these variables are not collected in sufficient temporal or spatial 

scales to make them useful for the analyses presented here.  

Inspection of the daily adult Delta Smelt salvage data (1993-2016) shows that the vast majority of 

adult Delta Smelt salvage occurs between December 1st and March 31st. Thus, consistent with Grimaldo et 

al. (2009), daily cumulative salvage from December 1st and March 31st was aggregated into as seasonal 

response variable for the analysis. A first flush response variable was also created for this analysis from 

the seasonal data set. First flush events occur in association with the first major winter storm of the season 

(Bergamaschi et al. 2001); these events have been identified as triggers of high salvage in some years 

(Grimaldo et al. 2009). The first flush response variable was constructed by only including salvage from 

December 1st to the date that daily cumulative salvage reached its 50th percentile for the season (i.e., the 

seasonal midpoint of salvage). We reasoned the accelerating part of the seasonal salvage trends would 

best represent the environmental conditions that lead to entrainment events of high concern to managers. 

Finally, models were applied to each fish facility separately to examine if patterns that underlie salvage 

were influenced by different factors since the SWP export capacity (292 m3/s) is almost two and half 

times greater than the CVP export capacity (130 m3/s). Also, although the SWP and CVP intakes are 

located relatively close to each other (< 3 km), the SWP differs from the CVP in having a large regulating 

reservoir known as the Clifton Court Forebay (CCF) that temporarily stores water from Old River to 

improve operations of the SWP pumps. Pre-screen losses of entrained fish to milling predators are higher 

at the SWP compared to the CVP because the CCF supports high predator densities which can result in 

poor survival of fish through the shallow water leading up to the fish screens (Gingras 1997, Castillo et al. 

2012). Thus, the two projects have the potential to observe different responses in salvage. Understanding 

the factors that affect salvage at each Project separately may shed light on finer scale dynamics useful for 

management applications. 

Data sources 

Project intakes are located in the southern Sacramento-San Joaquin Delta (Fig. 1). As previously 

mentioned, both the SWP and CVP have large fish screens at their intakes designed to save or “salvage” 

entrained fish. The SWP Skinner Fish Protective Facility (SFPF) and the CVP Tracy Fish Collection 

Facility (TFCF) direct fish through a complex louver system into collecting screens where they are 

eventually trucked and released back into the environment downstream from the SWP and CVP. A 

subsample of the salvaged fish are identified and measured. A variable fraction of Delta Smelt may 

survive the capture, handling, trucking and release process (Miranda et al. 2010, Morinaka 2013).  

The fish salvage facilities have been operating almost daily for the last few decades at the TFCF 

(since 1958) and SPFF (since 1968; Brown et al. 1996). Arguably, they are two of the largest fish 

sampling systems in the world. Up until the early 1990’s, salvage counts and identification were focused 
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on salmonids and striped bass (Morone saxatilis). However, after Delta Smelt were listed in 1993, focus 

on proper identification and detections resulted in a change in count frequency from twice per day (1978 

to 1992) to every two hours thereafter (Morinaka 2013). Daily salvage for each species per day for each 

facility is calculated by the following equation: 

𝑆𝑑 =∑𝑠𝑖

𝑛

𝑖=0

= 𝐶𝑖 ∗ (
𝑚𝑝𝑖

𝑡𝑖
) 

 

where Sd is the total daily salvage, si is the salvage per sample, Ci is the number of fishes in a sample 

defined by the minutes of water pumped (mpi) per the counting time (ti). Typically, there are six sample 

periods per day and twenty individuals per species greater than 20 mm fork length (FL) are measured. 

Salvage data for Delta Smelt and other species used in the analysis were obtained from the California 

Department of Fish Wildlife (CDFW) ftp site (ftp://ftp.dfg.ca.gov/Delta%20Smelt/).  Delta Smelt adult 

abundance estimates from the CDFW’s FMWT monitoring survey were obtained from the same ftp site. 

 Flow and water quality data were obtained from the California Department of Water Resources 

(CDWR) and United States Geological Survey website portals (www.water.ca.gov/dayflow/; 

http://cdec.water.ca.gov;  http://waterdata.usgs.gov/ca/nwis/).  

Statistical analyses 

Adult Delta Smelt salvage data were first explored using Boosted Regression Tree (BRT) models. 

Regression trees seek to model a response variable using one or more predictor variables; data is 

recursively partitioned into a hierarchy of subsets, and the regression tree describes the structure of the 

hierarchy. The goal is to reduce multidimensional space into smaller subsets that can be described by very 

simple models. Regression trees split into branches at nodes, where nodes represent a value of a single 

predictor variable. Leaves on the branches represent a single value of predicted response over a range of 

the predictor variable, until the next node. To fit a regression tree, an algorithm identifies regions of 

greatest variance in the relationship of response and predictors as potential nodes. Between nodes, model 

predictions or leaves are simply the response that minimizes residual error (e.g. the mean), conditional on 

prior tree nodes and the path from the tree root. Regression trees can accommodate many distributions 

(binomial, normal, Poisson, etc.) and are generally insensitive to outliers (Elith et al. 2008), and they are 

suited to non-linearity in the response. Regression trees can be unstable with small datasets, because small 

changes in training data can result in large changes in tree splits (Hastie et al. 2001).  

The boosting paradigm is that model performance is improved by averaging across many 

moderately fitting models rather than selecting a single or small group of perfectly fit models (Elith et al. 

2008). While traditional model selection approaches seek to identify a parsimonious model with few 

parameters, boosting approaches seek to fit many parameters and shrink their contribution, similar to 

ftp://ftp.dfg.ca.gov/Delta Smelt/)
http://www.water.ca.gov/dayflow/
http://cdec.water.ca.gov)/
http://waterdata.usgs.gov/ca/nwis/
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regularization methods (Hastie et al. 2001). Boosting is an ensemble method like model averaging, but the 

process is sequential and iteratively minimizes a loss function (deviance; analogous to sum of squared 

error). At first iteration, the boosted regression tree (BRT) is the best-fitting regression tree. At second 

iteration, the regression tree that best fits the residuals of the first is added to the BRT. This sequence 

proceeds until deviance is minimized and adding more trees results in greater deviance. The contribution 

of each tree to the BRT is limited or shrunk by the learning rate, and up to several thousands of trees are 

commonly fit and added to produce the final BRT.  

Although the BRT allows for inclusion of multiple correlated variables, potential explanatory 

variables were screened for collinearity (R2 > 0.6; Table 2) to reduce the number of predictors. If two 

variables were highly correlated, only the variable with the strongest conceptual link to salvage was 

selected for further inclusion. We reasoned that this would increase our ability to mechanistically interpret 

the results. SWP and CVP Project exports and Old and Middle River flows (OMR; see Grimaldo et al. 

2009) were both examined in the BRT because both have potentially important applications for 

management targets. Four alternative combinations of data were explored to determine whether any 

combination improved model performance above other combinations: SWP and CVP exports as 

individual effects, combined SWP and CVP exports, OMR flow and San Joaquin River. The best 

combination of data, as indicated by percent of null deviance explained, was used for inference. 

The boosted regression tree model was fit using R package dismo and the gbm.step function (R 

Development Core Team 2008). The gbm.step function used ten-fold cross validation to determine the 

optimal number of regression trees to fit. Trees were added until a deviance minimum was reached. 

Learning rate was set to the lowest rate that reached a deviance minimum with between 1,000 and 2,000 

trees (0.01 > lr > 0.1), and two-way interactions were modeled (tree complexity = 2). Half of the data 

were bagged as a training set at each iteration of the regression tree. 

 Diagnostics 

The fit of models and residual error distributions were graphically checked with plots of observed 

versus predicted salvage and plots of model residuals versus observed salvage. In order to test the 

predictive capabilities of the model, an annual cross validation was performed by sequentially omitting 

five randomized years of data, refitting the model to the incomplete dataset, and predicting the missing 

salvage observations. Similarly, the fitted model was used to predict salvage using new, preliminary 

hydrodynamics data for Water Year 2017, including December 2016 through March 2017. If the model 

accurately predicted missing or new salvage observations, it was accepted as a predictive model of 

salvage; however, if the model did not accurately predict missing or new salvage observations, it could 

only provide an analysis of historical salvage. 
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Results 

Salvage patterns and variable selection 

  In total, 2,911 days of observed salvage and corresponding explanatory variables, representing 

24 years of adult Delta Smelt salvage were analyzed. Salvage at both Projects showed a marked decline 

after 2005 (Fig. 2). Correlation analysis of potential explanatory variables indicated that only OMR and 

San Joaquin River flow exceeded the threshold of R2 = 0.6, so OMR and San Joaquin River flow were not 

included in the same dataset. Variables representing the day index and cumulative precipitation were 

somewhat correlated, and multicollinearity was apparent among all river flow variables (Table 2).  

Boosted Regression Trees 

Of the five alternative data combinations for deciding which Project export metrics to include 

(e.g., SWP plus CVP exports, SWP exports, CVP exports, OMR flow, and San Joaquin River flow), none 

explained a significantly greater percentage of observed salvage using either the data aggregated at the 

seasonal level or at the 50th percentile (Table 3). Therefore, separate SWP and CVP water exports data 

were used to fit the final model because they are more directly linked to our study questions for looking at 

the factors that affect salvage at each project separately. OMR was included because it has been used in 

previous examinations of adult Delta Smelt salvage (Grimaldo et al. 2009), is a management quantity 

(FWS 2008), and has a more direct effect on hydrodynamics experienced by Delta Smelt during 

entrainment. 

BRT models of salvage indicated that regardless of time scale – first flush or entire adult salvage 

period – the best predictors of salvage at both Projects were prior FMWT, combined SWP and CVP 

exports, OMR, and South Delta turbidity (Table 4). Variation in Yolo Bypass flow, at the lower end of 

the Yolo flow distribution, was also a good predictor of salvage at both Projects (Fig. 3). In general, more 

variables appeared to influence CVP salvage, while only a few variables were influential predictors of 

SWP salvage. No individual predictor was associated with substantial variation in salvage, as indicated by 

the scale of predicted salvage (Fig. 4); however, substantial variation in predicted salvage resulted from 

various combinations of, or interactions between predictors (Fig. 5). 

Comparison of influential predictors between the full dataset and the 50th percentile dataset 

indicated a difference in the first flush response observed in CVP salvage but little difference between 

SWP first flush salvage and salvage throughout the adult salvage season. Cumulative precipitation was a 

more influential predictor of SWP and CVP salvage during the first flush period, while turbidity was 

somewhat less influential during the first flush period than when considered across the entire season. Of 

less influence during the first flush period at the CVP were gross channel depletion, Cosumnes River 

flow, and CVP exports. 
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Although BRT models explained a large proportion of null deviance (94-86%), predictive 

performance was poor when entire years were removed and predicted from a model fit to other years. Of 

five sequentially omitted years, the highest R2 values were for omitted year 2010 (R2 = 0.20 – 0.36 for 

SWP and CVP models, respectively), and R2 values for all other omitted years were less than 0.1 (Table 

5).  

Discussion 

This study reinforces previous work that adult Delta Smelt salvage is largely explained by 

hydrodynamics (including Project exports and river inflows), water clarity (turbidity), precipitation, and 

adult abundance. However, the approach applied here provides an improved understanding of salvage  

risk for each Project separately and helped identify differences in the factors that influence salvage during 

first flush and over the season. Moreover, the statistical approach applied here is more robust than 

previous approaches (Grimaldo et al. 2009) which allows for stronger inference regarding the importance 

of factors that have led to salvage events during the previous 24 years. Key study findings are further 

discussed under key category of effects.   

Hydrodynamic effects: It is not surprising that adult Delta Smelt salvage increases with SWP 

exports. SWP efforts are almost two and half times higher than the CVP, largely responsible for net 

reverse tidal flows in the south Delta during high Project exports (Arthur et al. 1996, Monsen et al. 2007). 

As previously mentioned, in some years, adult Delta Smelt move into the south Delta where they become 

more vulnerable to water exports because they become distributed within the hydrodynamic “footprint” of 

the Projects where the net movement of water is toward the pumping plants. Higher SWP exports 

contributes to proportionally lower residence time of south Delta water towards the Projects (Kimmerer 

and Nobriga 2008). Thus, any adult Delta Smelt that move into the channels during first flush periods 

become increasing vulnerable to salvage as Project exports increase, which may explain the sharp peaks 

(1-2 weeks duration) in adult Delta Smelt salvage in some years (Fig. 2). Delta Smelt may also experience 

reduced rates of predation during higher exports because of faster hydraulic residence time in the Old and 

Middle river channels that lowers exposure time as fish travel through channels toward the SWP and CVP 

fish facilities. Juvenile Chinook salmon incure lower mortality rates to predators in the south Delta when 

Project exports are high and hydraulic residence times are short (Cavallo et al. 2013).  

What was surprising, was finding that CVP exports actually played a minor influence in directly 

affecting CVP salvage and that it had no detectable influence on SWP salvage. OMR flows had a higher 

influence on CVP salvage, moreso than even CVP exports, suggesting an indirect influence of SWP and 

CVP efforts as they both contribute to net reverse flows in the south Delta (Monsen et al. 2007). But the 

influence of OMR flow could also be related to San Joaquin River flow dynamics, especially for Delta 

Smelt that may take multiple routes to the salvage facilities. For example, it is generally assumed that 
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Delta Smelt largely move to the fish facilities via Old and Middle Rivers (Fig. 1). There are a number of 

routes that adult Delta Smelt can take to reach the fish facilities and even local dispersion around Project 

intakes themselves could influence which fish reach the CVP. OMR flows may have more of a 

mechanistic explanation for why adult Delta Smelt arrive at the CVP.  

OMR flows have been used as metric for management of adult entrainment risk, because the 

magnitude of salvage observations was related to OMR in the US Fish and Wildlife’s 2008 Biological 

Opinion (FWS 2008). Confirming those findings, BRT models of both CVP and SWP expected salvage 

increased at OMR < -5,000 cfs, when all other variables were held at their averages. Whle OMR flow was 

the second most important predictor of CVP salvage, more important than even CVP exports, the OMR 

threshold of -5,000 cfs was most notable in SWP salvage. 

The importance of Yolo Bypass flow to SWP salvage may be less related to hydrodynamic 

effects and more related to changes in Delta-wide turbidity. The Yolo Bypass drains several smaller river 

tributaries and an inundated floodplain under high Sacramento River flow (Sommer et al. 2001). These 

sources of river and/or floodplain inputs could help increase turbidity that triggers movement upstream, 

though this likely affects movement of Delta Smelt into the northern Delta not the southern Delta. 

Because Yolo Bypass flow is correlated (R2 = .30) with San Joaquin River flow (Table 2), the importance 

of Yolo Bypass flow may represent a system-wide increase in river flows that often lead to greater 

suspended sediment inputs and turbidity in the Delta.  

Turbidity Effects:  The importance of turbidity as a predictor of Delta Smelt salvage at the SWP 

and CVP is important because it has been overlooked in previous attempts to quantify entrainment losses 

(Kimmerer 2008, Kimmerer 2011, Miller 2011). Previous research examining adult Delta Smelt 

abundance and distribution in regional fish monitoring surveys shows that Delta Smelt are caught more 

frequently when the water is more turbid (Feyrer et al. 2007, Nobriga et al. 2008, Sommer and Mejia 

2013). This may be an effect of gear catchability (Latour 2015) and/or habitat use that reduces predation 

risk. Because the Project facilities entrain massive volumes of water compared to the monitoring survey 

trawls and because water clarity in the south Delta is relatively high at other times of the year (Nobriga et 

al. 2008, Sommer and Mejia 2013), the association of Delta Smelt salvage and turbid water is unlikely a 

gear efficiency issue. Rather, it is more likely that the adult Delta Smelt are moving with and occupying 

turbid water consistent with their more general use of pelagic habitat, a hypothesis supported by one 

recent study conducted during first flush periods (Bennett and Burau 2015). Thus, when turbid water gets 

entrained, it has a higher probability of adult Delta Smelt occupancy, which may explain the patterns 

observed here and reported previously (Grimaldo et al. 2009).  

Adult abundance: It is not surprising that estimated adult Delta Smelt stock size has a strong 

influence on SWP and CVP salvage. When there are more fish, there is a greater chance of detecting them 
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at the SWP and CVP fish facilities, especially when a greater proportion of the population is overlapping 

the zone of influence, which is a function of exports. It should be recognized that natural mortality arising 

from spawning activity increases as the spring progresses. Thus, the stock size vulnerable to entrainment 

risk decreases substantially by the end of March. This may explain why salvage of adult Delta Smelt is 

lower in March, even after storms that increase turbidity, compared to December and January when most 

adult Delta Smelt are salvaged. Storms in April and May have not resulted in significant adult Delta 

Smelt salvage events over the time series examined here.   

Fish behaviors:Results presented in this study cannot account for all behaviors that influence 

salvage risk. Adult Delta Smelt movement during the winter is likely linked to major change in their 

environment and pre-spawning activity (Bennett and Burau 2015). For both CVP and SWP 50th percentile 

data, precipitation (PREC) was found to be important relative to other variables. The underlying 

relationship between increasing precipitation and increased salvage is likely related to movements that 

some proportion of the population makes during first flush events (Grimaldo et al. 2009; Bennett and 

Burau 2015). How Delta Smelt respond to other environmental variables during first flush is unknown. 

Researchers in other estuaries have found osmerid spawning behavior to be influenced by lunar phasefda 

(Hirose and Kawaguchi 1998), semidiurnal tides (Middaugh et al. 1987) and water temperature 

(Nakashima and Wheeler 2002). Note that Delta Smelt show little movement after first flush events 

(Murphy and Hamilton 2013) (Polansky et al. 2017).  This may explain the high year-to-year variation in 

observed salvage patterns (Grimaldo et al. 2009).  

 

Management Implications:Managing Project exports during first flush periods creates conflict 

between resources managers responsible for the protection of Delta Smelt and water operators that want 

to maximize water exports during periods of increased river inflows (Brown et al. 2009). Information 

generated from this study reinforce previous work that suggested adult Delta Smelt salvage risk can be 

assessed (and managed) using a combination of factors that represent Delta Smelt habitat (e.g., turbidity), 

estimated adult stock size , and hydrodynamics (Project exports and river flows). Hence, real-time 

monitoring of Delta-wide turbidity, river inflow, and fish distribution remains a useful suite of tools for 

determining when first flush conditions materialize.  

New tagging techniques for cultured Delta Smelt (Wilder et al. 2016) could also be applied by 

releasing tagged fish during first flush periods to determine the rate and direction fish move in the south 

Delta similar to approaches used with Chinook Salmon (Oncorhyncus tschawytscha; Perry et al. 2010; 

Buchanan et al. 2013). These studies could also help quantify predation rates within the Clifton Court 

Forebay under high and low exports (Castillo et al. 2012) and in the channels that lead to the SWP and 
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CVP during first flush periods akin to research that has been done for salmonids in the estuary (Cavallo et 

al. 2015).  

A more relevant direct application of the BRT model is to use it as a forecasting tool for 

predicting salvage in real-time. However, our initial attempt to apply the BRT to forecast Delta Smelt 

salvage was not fruitful (Table 5). Nonetheless, because this study focused on identifying relationships 

between salvage and variables that are readily available for download in real-time, future efforts should 

seek to develop alternative forecast models that can be applied for management of adult Delta Smelt 

salvage. The development of coupled biological-hydrodynamic models could also prove useful as a 

management tool, especially if behavioral hypotheses can be reconciled with existing data on the species’ 

distribution and historical salvage patterns (Bennett and Burau 2015). 

It is worth noting that by analyzing SWP and CVP salvage independently, OMR flow was found 

to have smaller explanatory influence on salvage than some other variables. Currently, Project exports are 

managed through management of OMR flows. The basis for OMR flow management partially stems for 

earlier work showing that adult Delta Smelt salvage (Grimaldo et al. 2009) and proportional losses 

(Kimmerer 2008) increased as net OMR flow increased southward towards the Projects. The BRT model 

indicates that management must consider a number of factors to minimize salvage or entrainment risk. 

However, given the correlation of OMR and SWP and CVP models (Table 3), salvage and entrainment 

risk could be achieved through management of either indexes of the hydrodynamic influence from Project 

exports.  

Finally, it is worth noting that the ultimate objective for managing Delta Smelt entrainment 

should not focus on observed salvage. Rather, the management objective should be to target entrainment 

losses, in a traditional fisheries sense, to sustainable levels that do not compromise population growth 

rates (Maunder and Deriso 2011; Rose et al. 2013). The results presented in this study can help scientists 

and resource managers identify circumstances when those large entrainment losses are likely to occur, 

which can ultimately be used to develop population risk assessment models. The question about whether 

the Delta Smelt population can rebound from record-low abundances, even with improved entrainment 

management during the winter, remains outstanding given the importance of other factors at play (i.e., 

poor food supply, growth, water temperatures; see Maunder and Deriso 2011; Rose et al 2013). Managers 

and scientists should focus on developing linked management actions that promote population growth 

within and between years (Bennett 2005, Maunder and Deriso 2011, Rose et al. 2013, Interagency 

Ecological Program 2015).  
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Table 1. Variables used for examining adult Delta Smelt salvage dynamics at the SWP and CVP 

Variable Abbreviation Source  

Sacramento River flow SAC Dayflow  http://www.water.ca.gov/dayflow/ 

Yolo Bypass flow YOLO Dayflow  

Cosumnes River flow CSMR Dayflow  

San Joaquin River flow SJR Dayflow  

Precipitation PREC Dayflow  

Cumulative precipitation since 

December 1  

CPREC Dayflow  

X2 on December 1 DecX2 Dayflow  

State Water Project exports SWP Dayflow  

Central Valley Project exports CVP Dayflow  

Contra Costa exports OEXP Dayflow  

North Bay Aqueduct exports NBAQ Dayflow  

Gross Channel Depletion GCD Dayflow  

Old and Middle River flows OMR United States Geological Survey https://waterdata.usgs.gov/ca/nwis/rt 

Mallard Island water temperature Temp California Data Exchange Center https://cdec.water.ca.gov/ 

Clifton Court Forebay turbidity CCF.NTU California Data Exchange Center  

Day index beginning December 1 Day -  

Fall Midwater Trawl index FMWT California Department of Fish and 

Wildlife 

ftp://ftp.dfg.ca.gov/ 

 

 

 

  

http://www.water.ca.gov/dayflow/
https://waterdata.usgs.gov/ca/nwis/rt
https://cdec.water.ca.gov/
ftp://ftp.dfg.ca.gov/
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Table 2. Coefficient of determination (R2) matrix of physical variables. Variable combinations exceeding the threshold for acceptance as predictors to fit in the BRT model are highlighted in bold. 

Variables included the GAMs are italicized in the top row (see text for details).  

 SAC YOLO CSMR SJR SWP CVP CCC NBAQ GCD PREC CPREC OMR 

Day 0.03 0.00 0.02 0.04 0.03 0.00 0.06 0.19 0.41 0.01 0.52 0.03 
SAC  0.37 0.28 0.44 0.01 0.05 0.01 0.09 0.04 0.16 0.31 0.15 

YOL

O 
  0.34 0.34 0.00 0.00 0.01 0.01 0.01 0.10 0.09 0.20 

CSM

R 
   0.16 0.00 0.01 0.01 0.03 0.01 0.16 0.08 0.07 

SJR     0.03 0.00 0.02 0.03 0.04 0.03 0.31 0.65 

SWP      0.24 0.00 0.00 0.01 0.01 0.00 0.39 

CVP       0.00 0.00 0.01 0.01 0.01 0.21 

CCC        0.00 0.04 0.04 0.02 0.01 

NBA

Q 
        0.09 0.00 0.18 0.01 

GCD          0.00 0.28 0.03 

PREC           0.01 0.00 

CPRE

C 
           0.15 

 

 FMWT Temp 

CCF. 

NTU 

Dec

X2 

Day 0.00 0.29 0.02 0.00 
SAC 0.00 0.00 0.25 0.08 

YOLO 0.00 0.00 0.19 0.01 

CSMR 0.00 0.00 0.08 0.02 

SJR 0.00 0.00 0.29 0.13 

SWP 0.02 0.01 0.01 0.02 

CVP 0.01 0.00 0.01 0.00 

CCC 0.00 0.01 0.00 0.01 

NBAQ 0.04 0.06 0.06 0.00 

GCD 0.00 0.00 0.04 0.00 

PREC 0.00 0.00 0.05 0.00 

CPRE

C 

0.01 0.12 0.14 0.00 

OMR 0.00 0.00 0.14 0.09 

FMWT  0.00 0.00 0.13 

Temp   0.01 0.01 

CCF. 

NTU    0.02 
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Table 3. Percent of null deviance explained by four alternative model Project export combinations using Boosted Regression Tree analysis. Values in parentheses represent 95% credible intervals 

over 500 bootstrapped models. 

 

Full dataset 

 SWP salvage model  CVP salvage model 

 OMR SJR  OMR SJR 

SWP Exports, CVP Exports 94 (92-96) 94 (92-96)  85 (81-88) 86 (83-88) 

Combined SWP and CVP 

exports  94 (92-96) 94 (92-96) 

 

86 (77-88) 86 (81-88) 

 

50th percentile dataset 

 SWP salvage model  CVP salvage model 

 OMR SJR  OMR SJR 

SWP Exports, CVP Exports 93 (90-94) 94 (90-95)  87 (84-90) 87 (84-90) 

Combined SWP and CVP 

exports  93 (90-95) 91 (93-95) 

 

87 (83-90) 87 (84-90 

 

 

 

Table 4. Relative influence of variables in models fit to the full dataset and data representing 50th percentile (see text for details) using Boosted Regression Trees (BRTs). Only variables with at 

least 5% influence were ranked; other variables were considered insignificant. 

 

Central Valley Project  State Water Project 

 

Relative rank 

(influence)   

Relative rank 

(influence) 

 

Full 

dataset 

50% 

dataset   

Full 

dataset 

50% 

dataset 

FMWT 0.18 (1) 0.25 (1)  SWP 0.29 (1) 0.23 (1) 

OMR 0.10 (2) 0.10 (4)  YOLO 0.18 (2) 0.18 (3) 

CCF.NTU 0.10 (3) 0.06 (6)  FMWT 0.11 (3) 0.11 (5) 

CVP 0.08 (4) -  OMR 0.10 (4) 0.14 (4) 

CPREC 0.08 (5) 0.14 (2)  CCF.NTU 0.09 (5) - 

GCD 0.08 (6) -  CPREC 0.05 (6) 0.20 (2) 

YOLO 0.07 (7) 0.10 (5)  CVP - - 



21 | P a g e  
 

CSMR 0.06 (8) -  CSMR - - 

SWP 0.06 (9) 0.05 (6)  SAC - - 

CCC - -  CCC - - 

Temp - -  Temp - - 

PREC - -  NBAQ - - 

SAC - -  Day - - 

DecX2 - -  GCD - - 

NBAQ - -  PREC - - 

Day - 0.10 (3)  DecX2 - - 
 

 

 

Table 5. Coefficient of determination (R2) between observed and predicted salvage when years of data were sequentially omitted. Values in parentheses represent 95% credible intervals over 500 

bootstrapped models. 

 

Predicted 

year 

State Water  

Project 

Central Valley 

Project 

1998 0.006 0.01 

1999 0.02 0.08 

2004 0.20 0.36 

2010 0.02 0.08 

2013 0.02 0.05 
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Fig. 1. Map of the San Francisco Estuary and study region. State Water Project (SWP) and Central Valley Project (CVP) Project exports and fish facilities are located in the 

southern Sacramento-San Joaquin Delta. Old River and Middle River are indicated by blue and red lines respectively. Monitoring stations for water temperature (A) and turbidity 

(B) used in statistical models are shown on map.  

 

Fig. 2. Annual combined SWP and CVP salvage from 1993 and 2016.  
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Fig. 3.  Boosted regression tree (BRT) estimates of salvage at the CVP (A) and SWP (B). Only the most influential variables are shown. Estimates represent expected salvage 

across the range of observed variable values, while holding all other variables at their means. Blue lines indicate median model predictions; red lines indicate 95% credible 

intervals of predictions, and rug plots indicate observed variable values. 

 

Fig. 4. The highest ranked two-way interactions between physical variables used in BRT models for the CVP (A) and SWP (B).  

 

Fig. 5. Diagnostic plots for SWP salvage data examined using BRT models.  

 

Fig. 6. Diagnostic plots for CVP salvage data examined using BRT models. 
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Fig. 1 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 1 
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